• Title/Summary/Keyword: Plant growth hormone

Search Result 154, Processing Time 0.03 seconds

Novel Function of Cytokinin: A Signaling Molecule for Promotion of Antibiotic Production in Streptomycetes

  • Yang Young-Yell;Zhao Xin-Qing;Jin Ying-Yu;Huh Jung-Hyun;Cheng Jin-Hua;Singh Deepak;Kwon Hyung-Jin;Suh Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.896-900
    • /
    • 2006
  • Cytokinin has been known to act as a plant hormone to promote cell division and function in diverse processes in plant growth and development. Besides being produced in plants, it is also produced by various bacteria and fungi; however, its ecological significance is still unclear. In this report, we present an interesting finding that transzeatin riboside (tZR), a naturally occurring cytokinin compound, increased antibiotic production in many different streptomycetes, including Streptomyces coelicolor Ml3O, S. pristinaespiralis ATCC 25486, S. violaceoruber Tu22, S. anfibioticus ATCC l1891, and S. griseus IFO 13350. In vitro plate assays showed that the addition of 100 $\mu$M tZR increased the growth inhibition of Pseudomonas syringae pv. syringae, a plant pathogen, by S. griseus, a streptomycin producer. We suggest that cytokinin could act as a signaling molecule for antibiotic production in streptomycetes, a group of rhizosphere bacteria.

Selection and Characterization of S-Aminoethyl-L-Cysteine Resistant Plants from Gamma-ray Irradiated Embryogenic Callus in Sweet potato

  • Lee In-Sok;Kim Dong-Sub;Hong Chang-Pyo;Kang Si-Yong;Song Hi-Sup;Lee Sang-Jae;Lim Yong-Pyo;Lee Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.233-238
    • /
    • 2003
  • Sweet potato cells derived from Yulmi were isolated from embryogenic callus and irradiated with 50 Gy dose. Resistant cells were selected on a MS medium containing 1.0 mM S-aminoethyl-L-cysteine (AEC). This level of AEC approximately inhibits non-selected wild type cells. The callus resistant to this analog of lysine was subcultured for 30 days in absence of AEC to proliferate. The three resistant calli (AR-1, AR-2 and AR-3) with better growth were divvied into 0.5~1mm diameter and placed on MS medium with 0, 0.4, 0.6, 0.8 and 1.0 mM AEC. There are considerable growth difference between control callus and AEC resistant callus on the AEC-medium. The selected calli were placed on the hormone-free medium for regeneration. Three plantlets, five plantlets and six plantlets were recovered from AR-1, AR-2 and AR-3 calli, respectively. Each two regenerants in AR-1, AR-2 and AR3 were randomly selected for RAPD and SDS PAGE analysis. RAPD polymorph isms between Yulmi and AEC resistant plant from irradiated calli were detected in several Wako primers. Also, it was identified that two AEC resistant plants had higher protein than the original variety Yulmi.

Effective Multiplication of Somatic Embryos Using Suspension Culture and Regeneration in Soybean

  • Kim, Young Jin;Park, Tae Il;Kim, Hyun Soon;Suh, Sug Kee;Kim, Hag Sin;Yun, Song Joong
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • The use of liquid-medium-based procedure relative to the solid media led to a 4.5-fold increase in the number of cotyledon-stage embryos. The most efficient system for multiplication and regeneration of somatic embryos was CP6 procedure with the media MSD40/MSD20/MSM6AC/FNL0S3S3GM. However, the rate of regeneration was lower. About 71% of the embryos with dicotyledon were continued to develop the roots after desiccation treatment and 92% of the germinated embryos produced shoots in 10 days. Of the four morphologically different types of embryos, dicotyledonous ones showed a high frequency of conversion, while only a few with fused and horn type cotyledon developed shoots. Mature somatic embryos were desiccated in empty petri dishes for 12-72 h. Embryo survival rate was the highest after 12 h of desiccation, but maximal germination was observed at 24 h. After desiccation, they were placed on MS medium without growth regulators for germination. Germinating embryos were transferred to small pots with vermiculite for plant regeneration. The etiolating the plants during the growth was resolved to add 1% activated charcoal on hormone-free MS medium.

An Auxin Producing Plant Growth Promoting Rhizobacterium Bacillus subtilis AH18 which has Siderophore-Producing Biocontrol Activity (Auxin과 Siderophore 생산성 다기능 생물방제균 Bacillus subtilis AH18)

  • Jung Hee-Kyoung;Kim Jin-Rak;Woo Sang-Min;Kim Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.94-100
    • /
    • 2006
  • To isolate a bacterium that produces plant growth promoting hormone, a total of 29 bacteria were obtained from the soil in Gyeongsan, Korea. Among these, 14 strains were selected by their positive reaction on Salkowski to produce auxin. All of these were then tested for their property to produce siderophore using CAS (chrome azurol S) blue agar, and one was chosen for its ability to produce both, auxin and siderophore. This strain, denoted, AHl8, showed 1.5 times higher adventitious root induction rates than controls, using mung-beans. The strain also showed efficient biocontrol properties towards Fusarium-wilt of tomatoes in artificial pot assays. The strain was identified as Bacillus subtilis by 16s rDNA comparison and Biolog analyses. Growth and media conditions for Bacillus subtilis AH1 8 to highly produce siderophore were also investigated.

Anthraquinone Productivity by the Cultures of Adventitious Roots and Hairy Roots from Curled Dock (Rumex crispus) (소리쟁이 (Rumex crispus)의 부정근과 모상근 배양에 의한 Anthraquinone 생산성)

  • 장석원;김인현;한태진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • In order to survey anthraquinone productivity from in vitro root culture, transformed hairy roots of Rumex crispus were induced from leaf segments by infection with Agrobacterium rhizogenes strain $A_4$ and compared with adventitious roots. The optimum condition of adventitious root formation from leaf segments was 5 $\mu$M NAA added to MS medium. Mannopine was detected in the extract of hairy roots by paper electrophoresis, but not in adventitious roots. Secondary root tips of both adventitious roots and hairy roots elongated without lateral root branching in hormone free MS medium, but primary root tips showed more rapid growth with extensive lateral root branching. MS basal medium was the best for growth of the adventious roots and hairy roots for anthraquinone content. Adventitious root tips and hairy root tips cultured in liquid MS medium supplemented with 0.05 $\mu$M NAA and 0.1 $\mu$M kinetin (contained 5% sucrose) showed the maximal growth and anthraquinone content. Anthraquinone content of hairy roots was increased by the culture periods, but was reduced after 25 days of culture.

  • PDF

Ex situ acclimatization of asymbiotically germinated seedlings of endangered lady's slipper orchid(Cypripedium macranthos Sw.) (멸종위기종 복주머니란 발아특성 및 실생묘 현지외 적응성 검토)

  • Lee, Joung Kwan;Kwon, Young Hee;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Jeong, Mi Jin;Son, Sung Won;Suh, Gang Uk
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.37-37
    • /
    • 2018
  • We use two different methods for laboratory propagation from seed of lady's slipper orchid(Cypripedium macranthos Sw.); immature seed which also called green capsule or fully mature seed about 120~130 days from pollination. In green capsule culture, the seed pods should be collected within precisely right time. The right time of seed collection could be diverse under the wether conditions or nutritional factors of the plants. In fully matured seed culture, the more complicated procedures are needed to break the dormancy of the seed; thermal or chemical treatment. The seedlings in this study were easily germinated from immature seeds in Harvais medium; 53 days after pollination(DAP) in Cypripedium pubescens, DAP 65 in C. parviflorum and C. macranthos. The germinated seedlings were transplanted to hormone free media immediately to avoid abnormal growth of seedlings. When the seedlings have roots with a minimum length of around 2-3cm and have visible dormant buds, the seedlings were removed from the flask and stored in refrigerator for vernalization. To examine the correlation of seedlings and maternal plants, the 125 seedlings of C. macranthos were transplanted in the soil bed at a distance of 20-100 cm from mother plants on April 20. The survival rate of seedlings were 92% in 20 cm distance from the ripe plants, and 56 % in 100 cm distance. The seedlings which were transplanted near mother plants showed vigorous growth in plant height, leaf width, and especially dormant buds. Considering the existence of mycorrhiza which is a symbiotic association between a fungus and the roots of a orchid vascular, the various fungus from mother plants could affect the growth of the seedlings. These results indicate the possibility of high and stable production and practical industrialization of endangered lady's slipper orchids.

  • PDF

BioRational Approaches for Insect Control

  • Bowers, William-S.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.289-303
    • /
    • 1992
  • Investigation of the environmental impact of widespread pesticide use has revealed a virtue/vice relationship. Although many pesticides perform their function and disappear without harm to the environment, others persist beyond their useful purpose and cause direct of indirect hazard to man, domestic animals and wildlife. Concurrently, many pests have rapidly adjusted to chemical control practices through changes in behavior that avoid exposure to pesticides of throuth genetic selection for populations resistant to the toxicants. The prospect of losing control over insect herbivores and desease vectors and returning to the days of global hunger and disease is unthinkable. Fortunately, from basic studies of insect and plant biology many opportunities for the development of safe, selective and environmentally pacific strategies for insect pest management are being realized.

  • PDF

Studies on Growth and Differentiation of Suspension-Cultured Carrot Cells I. Alterations in Peroxidase Activity, Polyamine Content and Ethylene Production during Somatic Embryogenesis (당근 현탁 배양세포의 생장과 분화에 관한 연구 I. 배형성 과정에서 Peroxidase 활성, Polyamine 함량 및 Ethylene 성성의 변화)

  • 김응식
    • Journal of Plant Biology
    • /
    • v.33 no.4
    • /
    • pp.259-269
    • /
    • 1990
  • Changes of peroxidase activity, polyamine content and ethylene production during somatic embryogenesis in suspension-cultured carrot (Daucus carota L.) cells were investigated. As compared with nonembyrogenic cells and their medium, embryogenic cells and their medium were characterized by higher levels of peroxidase at all times of culture period. Peroxidase in embryogenic cells showed higher oxidation activity of IAA than in nonembryogenic cells at the torpedo stage, but the IAA oxidation activity of peroxidase released into embryogenic medium was lower than that of peroxidase released into nonembryogenic medium. Peroxidase patterns of embryogenic and nonembryogenic cells showed three cathodic bands, and one anodic band, while peroxidase patterns released into embryogenic and nonembryogenic media did not show any anodic bands and the isoelectric points of cathodic peroxidase were pH 7.7, 7.5 and 6.6. Compared with nonembryogenic cells, polyamine content in embryogenic cells was increased by 15% at the torpedo stage, but polyamine ratio was constant, and ethylene production was extremely low at all times of culture period. Therefore, it is suggested that the peroxidase in embryogenic cells is correlated with embryogenesis by regulating hormone ratios through IAA oxidation, while the peroxidase isozyme patterns may be used as a biochemical marker of embryogenesis. The increase of polyamine content and the decrease of ethylene production suggest an interaction between polyamine and ethlyene during embryogenesis.

  • PDF

Hardwood Cutting Propagation and Early Growth Characteristics of Empetrum nigrum var. japonicum K. Koch (시로미의 숙지삽목 증식 및 초기생장 특성)

  • Kim, Hong-Lim;Kim, Chan-Soo;Koh, Seok-Chan;Koh, Jung-Goon
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.530-536
    • /
    • 2006
  • Hardwood cutting propagation and early growth characteristics were investigated in order to develop the method of cutting propagation and to find out growth characteristics in the low altitude for in situ and ex situ conservation of Empetrum nigrum var. japonicum K. Koch, which is typical arctic alpine plants on Mt. Halla. The growth of roots and shoots was different depending on hormone concentrations or soil conditions. The survival rate, rooting rate, root growth, number of root and shoot growth increased with treatment of 100 mg/l or 500 mg/l NAA. Consequently, optimum condition of hardwood cutting was at treatment with 100 mg/l or 500 mg/l NAA. When plantlets from hardwood cuttings were exposed to the field condition, after 7 months survival rate was 73.3% without shading while $91.1{\sim}94.4%$ at shading conditions. In the green house, however, survival rate of plantlets were $95.6{\sim}97.8%$ without shading. The growth of plantlets was different depending on sites and shading conditions. Particularly, the best growth was obtained when the plantlets were grown in shading conditions. It indicates that relative humidity and light intensity are correlated with the growth in the low altitude area.

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF