• 제목/요약/키워드: Plant diseases

검색결과 1,572건 처리시간 0.028초

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

어류 경구백신 현황과 전망 (Edible vaccine for aquacultured fish: present and prospect)

  • 박은준;김미나;박주영;차재호;정화지
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.269-274
    • /
    • 2010
  • As the capture fishing industry has declined, the aquaculture industry has become an important source of seafood. With this tendency all fish farming will be performed by large-scale farms where the fish are cultivated in much high density and as a result the incidence of infectious diseases increases. Therefore, vaccination has become an increasingly important part of aquaculture as a cost effective method of controlling various diseases. The early fish vaccines were the formalin inactivated bacteria or virus cultures, which were administered by either immersion or injection. Recombinant DNA biotechnology allowed us to develop orally administrated DNA and recombinant vaccines. In terms of the manufacturing process and cost, Lemna and Spirodela is the most efficient and reliable plant expression system for the production of edible vaccine.

유용 자원식물의 진균성 신병해(V) (New Fungal Disease of Economic Resource Plants in Korea (V))

  • 신현동
    • 한국식물병리학회지
    • /
    • 제14권1호
    • /
    • pp.52-61
    • /
    • 1998
  • This paper is the fifth report about the fungal diseases of economic resource plants observed newly in Korea. It contains short descriptions on symptoms, occurrence conditions, pathogens, and some phytopathological notes for each of 10 fungal plant diseases. They are identified as leaf spot of Adenophora triphylla var. japonica by Septoria lengyelii, leaf spot of Calystegia soldanella by S. convolvuli, leaf spot of Campanula punctata by S. campanulae, leaf spot of Codonopsis lanceolata by S. codonopsidis, leaf spot of Geum japonicum by s. gei, black spot of Oenanthe javanica by s. oenanthes, leaf spot of Oenothera odorata by S. oenotherae, angular leaf spot of Rehmannia glutinosa by S. digitalis, brown spot of Rubus crataegifolius by s. rubi, and leaf spot of Viola verecunda by S. violae-palustris, respectively.

  • PDF

Hepatoprotective effect of Rumecis Semen

  • Lee, Shin-Seok;Huh, Yeon-Gu;Yim, Dong-Sool;Lee, Sook-Yoen
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.242-242
    • /
    • 2002
  • The root of Rumex crispus(Polygonaceae) has been used as one of many oriental medicines ofr the treatment of cathartics, juandice and skin diseases etc. Recently, it is reported as one of anticancer agents and a remedy of acute hepatitis in many traditional medicines. Also, the seed of this plant has been used as a folk medicine for the treatment of digestion problems, liver diseases and many sorts of tumors. In this study we have collected the seed of this plant in rural area and investigated the efficacy of hepatoprotective activity from liver cell damage induced by carbon tetrachloride on mice with methanol extracts, ethylacetate and butanol fractions of this plant

  • PDF

장미 줄기에 발생하는 식물병의 종류 및 증상 (Plant Diseases Occurring on Rose Stem)

  • 한경숙;박종한;이중섭;서상태
    • 식물병연구
    • /
    • 제12권2호
    • /
    • pp.65-68
    • /
    • 2006
  • 장미는 세계적으로 가장 많이 재배되고 있는 화훼작물로서 최근에 양액재배 및 토양재배 되는 장미에서 발생하는 줄기마름증상에 대한 연구를 수행하였다. 장미의 가지나 줄기가 말라죽는 증상은 크게 4 가지 병에 의한 것으로 조사되었는데, Botrytis cinerea에 의한 잿빛곰팡이병, Coniothyrium fuckelii에 의한 가지 마름병, Colletotrichum gloeosporioides에 의한 탄저병, 그리고 Pythium sp. 에 의한 뿌리썩음병이었다. 이들 병의 진단과 방제에 도움이 되고자 병 증상과 병원균의 특성에 대하여 기술하였다.

Co-treatment with Origanum Oil and Thyme Oil Vapours Synergistically Limits the Growth of Soil-borne Pathogens Causing Strawberry Diseases

  • Jong Hyup, Park;Min Geun, Song;Sang Woo, Lee;Sung Hwan, Choi;Jeum Kyu, Hong
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.673-678
    • /
    • 2022
  • Vapours from origanum oil (O) and thyme oil (T) were applied to the four soil-borne strawberry pathogens Fusarium oxysporum f. sp. fragariae, Colletotrichum fructicola, Lasiodiplodia theobromae, and Phytophthora cactorum, causing Fusarium wilt, anthracnose, dieback, and Phytophthora rot, respectively. Increasing T vapour doses in the presence of O vapour strongly inhibited mycelial growths of the four pathogens and vice versa. When mycelia of F. oxysporum f. sp. fragariae and P. cactorum exposed to the combined O + T vapours were transferred to the fresh media, mycelial growth was restored, indicating fungistasis by vapours. However, the mycelial growth of C. fructicola and L. theobromae exposed to the combined O + T vapours have been slightly retarded in the fresh media. Prolonged exposure of strawberry pathogens to O + T vapours in soil environments may be suggested as an alternative method for eco-friendly disease management.

Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications

  • Da-Ran Kim;Chang-Wook Jeon;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.322-328
    • /
    • 2024
  • Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • 식물병연구
    • /
    • 제26권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1994년도 Proceedings of International Symposium on BIOLOGICAL CONTROL OF PLANT DISEASES Korean Society of Plant Pathology
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Improving the Recognition of Known and Unknown Plant Disease Classes Using Deep Learning

  • Yao Meng;Jaehwan Lee;Alvaro Fuentes;Mun Haeng Lee;Taehyun Kim;Sook Yoon;Dong Sun Park
    • 스마트미디어저널
    • /
    • 제13권8호
    • /
    • pp.16-25
    • /
    • 2024
  • Recently, there has been a growing emphasis on identifying both known and unknown diseases in plant disease recognition. In this task, a model trained only on images of known classes is required to classify an input image into either one of the known classes or into an unknown class. Consequently, the capability to recognize unknown diseases is critical for model deployment. To enhance this capability, we are considering three factors. Firstly, we propose a new logits-based scoring function for unknown scores. Secondly, initial experiments indicate that a compact feature space is crucial for the effectiveness of logits-based methods, leading us to employ the AM-Softmax loss instead of Cross-entropy loss during training. Thirdly, drawing inspiration from the efficacy of transfer learning, we utilize a large plant-relevant dataset, PlantCLEF2022, for pre-training a model. The experimental results suggest that our method outperforms current algorithms. Specifically, our method achieved a performance of 97.90 CSA, 91.77 AUROC, and 90.63 OSCR with the ResNet50 model and a performance of 98.28 CSA, 92.05 AUROC, and 91.12 OSCR with the ConvNext base model. We believe that our study will contribute to the community.