• Title/Summary/Keyword: Plant disease management

Search Result 319, Processing Time 0.021 seconds

Weather Conditions Drive the Damage Area Caused by Armillaria Root Disease in Coniferous Forests across Poland

  • Pawel Lech;Oksana Mychayliv;Robert Hildebrand;Olga Orman
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.548-565
    • /
    • 2023
  • Armillaria root disease affects forests around the world. It occurs in many habitats and causes losses in the infested stands. Weather conditions are important factors for growth and development of Armillaria species. Yet, the relation between occurrence of damage caused by Armillaria disease and weather variables are still poorly understood. Thus, we used generalized linear mixed models to determine the relationship between weather conditions of current and previous year (temperature, precipitation and their deviation from long-term averages, air humidity and soil temperature) and the incidence of Armillaria-induced damage in young (up to 20 years old) and older (over 20 years old) coniferous stands in selected forest districts across Poland. We used unique data, gathered over the course of 23 years (1987-2009) on tree damage incidence from Armillaria root disease and meteorological parameters from the 24-year period (1986-2009) to reflect the dynamics of damage occurrence and weather conditions. Weather parameters were better predictors of damage caused by Armillaria disease in younger stands than in older ones. The strongest predictor was soil temperature, especially that of the previous year growing season and the current year spring. We found that temperature and precipitation of different seasons in previous year had more pronounced effect on the young stand area affected by Armillaria. Each stand's age class was characterized by a different set of meteorological parameters that explained the area of disease occurrence. Moreover, forest district was included in all models and thus, was an important variable in explaining the stand area affected by Armillaria.

Identification and Characterization of Colletotrichum Species Associated with Bitter Rot Disease of Apple in South Korea

  • Oo, May Moe;Yoon, Ha-Yeon;Jang, Hyun A;Oh, Sang-Keun
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.480-489
    • /
    • 2018
  • Bitter rot caused by Colletotrichum species is a common fruit rotting disease of apple and one of the economically important disease in worldwide. In 2015 and 2016, distinct symptoms of bitter rot disease were observed in apple orchards in five regions of South Korea. In the present study, infected apples from these regions were utilized to obtain eighteen isolates of Colletotrichum spp. These isolates were identified and characterized according to their morphological characteristics and nucleotide sequence data of internal transcribed spacer regions and glyceraldehyde-3-phosphate-dehydrogenase. Molecular analyses suggested that the isolates of Colletotrichum causing the bitter rot disease in South Korea belong to 4 species: C. siamense; C. fructicola; C. fioriniae and C. nymphaeae. C. siamense and C. fructicola belonged to Musae Clade of C. gloeosporioides complex species while C. fioriniae and C. nymphaeae belonged to the Clade 3 and Clade 2 of C. acutatum complex species, respectively. Additionally, we also found that the isolates of C. gloeosporioides species-complex were more aggressive than those in the C. acutatum species complex via pathogenicity tests. Taken together, our results suggest that accurate identification of Colletotrichum spp. within each species complex is required for management of bitter rot disease on apple fruit in South Korea.

Impact of Smut (Sporisorium scitamineum) on Sugarcane's Above-Ground Growth and the Determinants of the Disease Intensity in the Ethiopian Sugarcane Plantations

  • Samuel Tegene;Habtamu Terefe;Esayas Tena
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.34-49
    • /
    • 2024
  • The development of sustainable smut management techniques requires an understanding of the impacts of smut on sugarcane growth and the relationships between smut intensity and meteorological variables, varieties, and crop types. Thus, assessments were made with the objectives to 1) determine the effect of smut on the above-ground growth of sugarcane, and 2) quantify the association of smut with weather variables, varieties and crop types. The effect of smut on above-ground growth was assessed in six fields planted with NCo 334 (wider coverage) having 6 months of age in Fincha and Metehara fields in 2021. Data on above-ground growth were taken from 20 randomly selected smut-affected and healthy stools from each field. Besides, 6 years' data (2015 to 2021) on the numbers of smut-affected stools and smut whips of 79 fields were collected. Furthermore, 10 years' (2011 to 2021) weather data were acquired from the sugar plantations. The results demonstrated reduction in the above-ground growth of sugarcane in the range of 18.39% and 73.42% due to smut. In addition, weather variables explained about 68.48% and 66.58% of the variability in the number of smut-affected stools and whips respectively. Smut intensity increased with crop types for susceptible varieties. The tight association between the smut epidemic and crop types, varieties, and weather, implied that these parameters must be carefully considered in management decisions. Continuous monitoring of smut disease, meteorological variables, varieties, and crop types in all the sugarcane plantations could be done as a part of integrated smut management in the future.

Bactericidal Efficacy of Oxidized Silver against Biofilms Formed by Curtobacterium flaccumfaciens pv. flaccumfaciens

  • Harding, Michael W.;Marques, Lyriam L.R.;Allan, Nick;Olson, Merle E.;Buziak, Brenton;Nadworny, Patricia;Omar, Amin;Howard, Ronald J.;Feng, Jie
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.334-344
    • /
    • 2022
  • Bacterial wilt is a re-emerging disease on dry bean and can affect many other crop species within the Fabaceae. The causal agent, Curtobacterium flaccumfaciens pv. flaccumfaciens (CFF), is a small, Gram-positive, rod-shaped bacterium that is seed-transmitted. Infections in the host become systemic, leading to wilting and economic loss. Clean seed programs and bactericidal seed treatments are two critical management tools. This study characterizes the efficacies of five bactericidal chemicals against CFF. It was hypothesized that this bacterium was capable of forming biofilms, and that the cells within biofilms would be more tolerant to bactericidal treatments. The minimum biocide eradication concentration assay protocol was used to grow CFF biofilms, expose the biofilms to bactericides, and enumerate survivors compared to a non-treated control (water). Streptomycin and oxysilver bisulfate had EC95 values at the lowest concentrations and are likely the best candidates for seed treatment products for controlling seed-borne bacterial wilt of bean. The results showed that CFF formed biofilms during at least two phases of the bacterial wilt disease cycle, and the biofilms were much more difficult to eradicate than their planktonic counterparts. Overall, biofilm formation by CFF is an important part of the bacterial wilt disease cycle in dry edible bean and antibiofilm bactericides such as streptomycin and oxysilver bisulfate may be best suited for use in disease management.

Soilborne Diseases of Mulberry and their Management

  • Sharma, D.D.;Naik, V.Nishitha;Chowdary, N.B.;Mala, V.R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.93-106
    • /
    • 2003
  • Soilborne diseases pose a serious problem for mulberry cultivation during nursery plantation and established gardens, which cause severe loss in revenue generation of mulberry growers as compared to foliar diseases. Various soilborne diseases affect mulberry. Among them, root knot and root rot affect the established plantation resulting in severe loss in leaf yield apart from deterioration in leaf quality, which is a pre-requisite in successful sericulture to get the good quality of cocoons. Besides, stem-canker, cutting rot, collar rot and die-back, affect the initial establishment and survivability of mulberry plantation in nursery. The problem is difficult to handle, due to the complex nature of the diseases and also involvement of various biotic and abiotic factors. This is compounded by the occurrence of disease complex (especially nematode + soilborne pathogenic microbes) in established mulberry gardens, which facilitates quick spread of the disease and enhance the plant mortality, resulting substantial loss in leaf yield. Therefore, prevention and timely control measures need to be taken up to protect the mulberry plants from different soilborne plant pathogens. In this review article, symptomatology, epidemiology, disease cycle and control measures of soilborne diseases of mulberry are discussed.

Biocontrol of Maize Diseases by Microorganisms (미생물을 활용한 옥수수병의 생물학적 방제)

  • Jung-Ae, Kim;Jeong-Sup, Song;Min-Hye, Jeong;Sook-Young, Park;Yangseon, Kim
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.195-203
    • /
    • 2022
  • Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.

Viral Metatranscriptomic Analysis to Reveal the Diversity of Viruses Infecting Satsuma Mandarin (Citrus unshiu) in Korea

  • Hae-Jun Kim;Se-Ryung Choi;In-Sook Cho;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • Citrus cultivation plays a pivotal role, making a significant contribution to global fruit production and dietary consumption. Accurate identification of viral pathogens is imperative for the effective management of plant viral disease in citrus crops. High-throughput sequencing serves as an alternative approach, enabling comprehensive pathogen identification on a large scale without requiring pre-existing information. In this study, we employed HTS to investigate viral pathogens infecting citrus in three different regions of South Korea: Jejudo (Jeju), Wando-gun (Wando), and Dangjin-si (Dangjin). The results unveiled diverse viruses and viroids that exhibited regional variations. Notably, alongside the identification of well-known citrus viruses such as satsuma dwarf virus, citrus tatter leaf virus, and citrus leaf blotch virus (CLBV), this study also uncovered several viruses and viroids previously unreported in Korean citrus. Phylogenetic analysis revealed that majority of identified viruses exhibited the closest affilations with isolates from China or Japan. However, CLBV and citrus viroid-I-LSS displayed diverse phylogenetic positions, reflecting their regional origins. This study advances our understanding of citrus virome diversity and regional dynamics through HTS, emphasizing its potential in unraveling intricate viral pathogens in agriculture. Consequently, it significantly contributes to disease management strategies, ensuring the resilience of the citrus industry.

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Paramyrothecium eichhorniae sp. nov., Causing Leaf Blight Disease of Water Hyacinth from Thailand

  • Pinruan, Umpawa;Unartngam, Jintana;Unartngam, Arm;Piyaboon, Orawan;Sommai, Sujinda;Khamsuntorn, Phongsawat
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • Paramyrothecium eichhorniae sp. nov. was observed and collected from Chiang Mai and Phetchaburi Provinces, Thailand. This new species is introduced based on morphological and molecular evidence. This fungus is characterized by its production of sporodochium conidiomata with a white setose fringe surrounding an olivaceous green to dark green slimy mass of conidia, penicillately branched conidiophores, and aseptate and cylindrical to ellipsoid conidia. Phylogenetic analyses of combined LSU rDNA, ITS rDNA, tef1, rpb2, tub2 and cmdA sequence data using maximum parsimony, maximum likelihood and Bayesian approaches placed the fungus in a strongly supported clade with other Paramyrothecium species in Stachybotryaceae (Hypocreales, Sordariomycetes). The descriptions of the species are accompanied by illustrations of morphological features, and a discussion of the related taxa is presented.

Fusarium oxysporum Protects Douglas-fir (Pseudotsuga menziesii) Seedlings from Root Disease Caused by Fusarium commune

  • Dumroese, R. Kasten;Kim, Mee-Sook;James, Robert L.
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.311-316
    • /
    • 2012
  • Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a century, but attempts to distinguish virulence by correlating morphological characteristics with results of pathogenicity tests were unsuccessful. Recent molecular characterization and pathogenicity tests, however, revealed that selected isolates of F. oxysporum are benign on Douglas-fir (Pseudotsuga menziesii) seedlings. Other morphologically indistinguishable isolates, which can be virulent, were identified as F. commune, a recently described species. In a replicated greenhouse study, inoculating Douglas-fir seedlings with one isolate of F. oxysporum prevented expression of disease caused by a virulent isolate of F. commune. Moreover, seedling survival and growth was unaffected by the presence of the F. oxysporum isolate, and this isolate yielded better biological control than a commercial formulation of Bacillus subtilis. These results demonstrate that an isolate of nonpathogenic F. oxysporum can effectively reduce Fusarium root disease of Douglas-fir caused by F. commune under nursery settings, and this biological control approach has potential for further development.