DOI QR코드

DOI QR Code

Fusarium oxysporum Protects Douglas-fir (Pseudotsuga menziesii) Seedlings from Root Disease Caused by Fusarium commune

  • Dumroese, R. Kasten (USDA Forest Service, Rocky Mountain Research Station) ;
  • Kim, Mee-Sook (Department of Forestry, Environment, and Systems, Kookmin University) ;
  • James, Robert L. (USDA Forest Service, Forest Health Protection)
  • Received : 2011.08.29
  • Accepted : 2012.01.30
  • Published : 2012.09.01

Abstract

Fusarium root disease can be a serious problem in forest and conservation nurseries in the western United States. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Fusarium spp. within the F. oxysporum species complex have been recognized as pathogens for more than a century, but attempts to distinguish virulence by correlating morphological characteristics with results of pathogenicity tests were unsuccessful. Recent molecular characterization and pathogenicity tests, however, revealed that selected isolates of F. oxysporum are benign on Douglas-fir (Pseudotsuga menziesii) seedlings. Other morphologically indistinguishable isolates, which can be virulent, were identified as F. commune, a recently described species. In a replicated greenhouse study, inoculating Douglas-fir seedlings with one isolate of F. oxysporum prevented expression of disease caused by a virulent isolate of F. commune. Moreover, seedling survival and growth was unaffected by the presence of the F. oxysporum isolate, and this isolate yielded better biological control than a commercial formulation of Bacillus subtilis. These results demonstrate that an isolate of nonpathogenic F. oxysporum can effectively reduce Fusarium root disease of Douglas-fir caused by F. commune under nursery settings, and this biological control approach has potential for further development.

Keywords

References

  1. Agresti, A., Wackerly, D. and Boyett, J. M. 1979. Exact conditional tests for cross-classifications: approximation of attained significance levels. Psychometrika 44:75-83. https://doi.org/10.1007/BF02293786
  2. Alabouvette, C., Lemanceau, P. and Steinberg, C. 1993. Recent advances in biological control of Fusarium wilts. Pestic. Sci. 37:365-373. https://doi.org/10.1002/ps.2780370409
  3. Blok, W. J., Zwankhuizen, M. J. and Bollen, G. J. 1997. Biological control of Fusarium oxysporum f.sp. asparagi by applying non-pathogenic isolates of F. oxysporum. Biocontrol Sci. Techn. 7:525-541.
  4. Bloomberg, W. J. 1971. Diseases of Douglas-fir seedlings caused by Fusarium oxysporum. Phytopathology 61:467-470. https://doi.org/10.1094/Phyto-61-467
  5. Bolwerk, A., Lagopodi, A. L., Lugtenberg, B. J. J. and Bloemberg, G. V. 2005. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 18:710-721. https://doi.org/10.1094/MPMI-18-0710
  6. Dumroese, R. K. and James, R. L. 2005. Root diseases in bareroot and container nurseries of the Pacific Northwest: epidemiology, management, and effects on outplanting performance. New Forest. 30:185-202. https://doi.org/10.1007/s11056-005-4422-7
  7. Dumroese, R. K., James, R. L. and Wenny, D. L. 1996. Gliocladium virens in an alginate prill ineffective as a biological control of Fusarium root disease in container-grown Douglas-fir. New Forest. 12:113-124.
  8. Dumroese, R. K., James, R. L. and Wenny, D. L. 1998. Interactions between Streptomyces griseoviridis, Fusarium root disease, and Douglas-fir seedlings. New Forest. 15:181-191. https://doi.org/10.1023/A:1006502324840
  9. Dumroese, R. K., James, R. L. and Wenny, D. L. 2002. Hot water and copper coatings in reused containers decrease inoculum of Fusarium and Cylindrocarpon and increase Douglas-fir seedling growth. HortScience 37:943-947.
  10. Fisher, N. L., Burgess, L. W., Toussoun, T. A. and Nelson, P. E. 1982. Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72:151-153. https://doi.org/10.1094/Phyto-72-151
  11. Fravel, D. R. and Larkin, R. P. 2002. Reduction of Fusarium wilt of hydroponically grown basil by Fusarium oxysporum strain CS-20. Crop Prot. 21:539-543. https://doi.org/10.1016/S0261-2194(01)00143-0
  12. Fravel, D.R., Olivain, C., and Alabouvette, C. 2003. Fusarium oxysporum and its biocontrol. New Phytol. 157:493-502. https://doi.org/10.1046/j.1469-8137.2003.00700.x
  13. Fuchs, J.-G., Moënne-Loccoz, Y. and Défago, G. 1997. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis. 81:492-496. https://doi.org/10.1094/PDIS.1997.81.5.492
  14. Fuchs, J.-G., Moenne-Loccoz, Y. and Defago, G. 1999. Ability of nonpathogenic Fusarium oxysporum Fo47 to protect tomato against Fusarium wilt. Biol. Control 14:105-110. https://doi.org/10.1006/bcon.1998.0664
  15. Gordon, T. R. and Martyn, R. D. 1997. The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol. 35:111-128. https://doi.org/10.1146/annurev.phyto.35.1.111
  16. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  17. Huertas-Gonzalez, M. D., Ruiz-Roldan, M. C., De Pietro, A. and Roncero, M. I. G. 1999. Cross protection provides evidence for race-specific avirulence factors in Fusarium oxysporum. Physiol. Mol. Plant Pathol. 54:63-72. https://doi.org/10.1006/pmpp.1998.0185
  18. James, R. L. 2002. Biological control of Fusarium oxysporum and Fusarium proliferatum on young Douglas-fir seedlings by a nonpathogenic strain of Fusarium oxysporum. United States Department of Agriculture, Forest Service, Northern Region, Forest Health Protection. Report 02-2, 14 p.
  19. James, R. L., Dumroese, R. K., Wenny, D. L., Myers, J. F. and Gilligan, C. J. 1987. Epidemiology of Fusarium on containerized Douglas-fir seedlings. (1) Seed and seedling infection, symptom production, and disease progression. United States Department of Agriculture, Forest Service, Timber, Cooperative Forestry and Pest Management, Northern Region. Report 87-13, 22 p.
  20. James, R. L., Dumroese, R. K., Gilligan, C. J. and Wenny, D. L. 1989. Pathogenicity of Fusarium isolates form Douglas-fir seed and container-grown seedlings. University of Idaho, Idaho Forest, Wildlife and Range Experiment Station. Bulletin Number 52, 10 p.
  21. James, R. L., Page-Dumroese, D. S., Kimball, S. K. and Omi, S. 1996. Effects of Brassica cover crop, organic amendment, fallowing, and soil fumigation on production of bareroot Douglas-fir seedlings - USDA Forest Service Nursery, Coeur d'Alene, Idaho. United States Department of Agriculture, Forest Service, Northern Region, Forest Health Protection. Report 96-6, 10 p.
  22. Kim, M.-S., Stewart, J. E., Dumroese, R. K. and Klopfenstein, N. B. 2012. Occurrence of the root rot pathogen, Fusarium commune, in forest nuseries of the midwestern and western United States. J. Phytopathol. 160:112-114. https://doi.org/10.1111/j.1439-0434.2011.01865.x
  23. Komada, H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Protect. Res. 8:114-125.
  24. Landis, T. D., Tinus, R. W., McDonald, S. E. and Barnett, J. P. 1989. Seedling Nutrition and Irrigation, Volume 4, The Container Tree Nursery Manual. United States Department of Agriculture, Forest Service. Agriculture Handbook 674, 119 p.
  25. Larkin, R. P. and Fravel, D. R. 1999. Mechanisms of action and dose-response relationships governing biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 89:1152-1161. https://doi.org/10.1094/PHYTO.1999.89.12.1152
  26. Larkin, R. P. and Fravel, D. R. 2002. Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92:1160-1166. https://doi.org/10.1094/PHYTO.2002.92.11.1160
  27. Mandeel, Q. and Baker, R. 1991. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81:462-469. https://doi.org/10.1094/Phyto-81-462
  28. Miles, M. R. and Wilcoxson, R. D. 1984. Production of fungal inoculum using a substrate of perlite, cornmeal, and potato dextrose agar. Plant Dis. 68:310. https://doi.org/10.1094/PD-68-310
  29. Mousseaux, M. R., Dumroese, R. K., James, R. L., Wenny, D. L. and Knudsen, G. R. 1998. Efficacy of Trichoderma harzianum as a biological control of Fusarium oxysporum in containergrown Douglas-fir. New Forest. 15:11-21. https://doi.org/10.1023/A:1006512519895
  30. Nelson, P. E., Toussoun, T. A. and Marasas, W. F. O. 1983. Fusarium species: an illustrated manual for identification. The Pennsylvania State University Press, University Park, Pennsylvania, USA: 193 pp.
  31. Salerno, M.-I., Gianinazzi, S., Arnould, C. and Gianinazzi-Pearson, V. 2000. Cell interactions between a nonpathogenic Fusarium oxysporum strain and root tissues of Eucalyptus viminalis. J. Gen. Plant Pathol. 70:153-158.
  32. Shishido, M., Miwa, C., Usami, T., Amemiya, Y. and Johnson, K. B. 2005. Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072-1080. https://doi.org/10.1094/PHYTO-95-1072
  33. Skovgaard, K., Rosendahl, S., O'Donnell, K. and Nirenberg, H. 2003. Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia 95:630-636. https://doi.org/10.2307/3761939
  34. Spaulding, P. 1914. The damping-off of coniferous seedlings. Phytopathology 4:73-88.
  35. Stewart, J. E., Kim, M.-S., James, R. L., Dumroese, R. K. and Klopfenstein, N. B. 2006. Molecular characterization of Fusarium oxysporum and Fusarium commune isolates from a conifer nursery. Phytopathology 96:1124-1133. https://doi.org/10.1094/PHYTO-96-1124
  36. Stewart, J. E., Abdo, Z., Dumroese, R. K., Klopfenstein, N. B. and Kim, M.-S. 2012. Virulence of Fusarium oxysporum and F. commune to Douglas-fir (Pseudotsuga menziesii) seedlings. Forest Pathol. 42:220-228. https://doi.org/10.1111/j.1439-0329.2011.00746.x
  37. Wenny, D. L. and Dumroese, R. K. 1992. A growing regime for container-grown Douglas-fir seedlings. Idaho Forest, Wildlife and Range Experiment Station. Bulletin 49, 8 p.

Cited by

  1. Efficacy of reduced rate fumigant alternatives and methyl bromide against soilborne pathogens and weeds in western forest nurseries vol.85, 2016, https://doi.org/10.1016/j.cropro.2016.03.016
  2. Rhabdocline needle cast — most recent findings of the occurrence ofRhabdocline pseudotsugaein Douglas-fir seeds1 vol.92, pp.6, 2014, https://doi.org/10.1139/cjb-2013-0238
  3. Management of Fusarium diseases affecting conifers vol.73, 2015, https://doi.org/10.1016/j.cropro.2015.02.018