• Title/Summary/Keyword: Plant conservation

Search Result 1,162, Processing Time 0.032 seconds

Evaluation of forage production, feed value, and ensilability of proso millet (Panicum miliaceum L.)

  • Wei, Sheng Nan;Jeong, Eun Chan;Li, Yan Fen;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.38-51
    • /
    • 2022
  • Whole-plant corn (Zea may L.) and sorghum-sudangrass hybrid [Sorghum bicolor (L.) Moench] are major summer crops that can be fed as direct-cut or silage. Proso millet is a short-season growing crop with distinct agronomic characteristics that can be productive in marginal lands. However, information is limited about the potential production, feed value, and ensilability of proso millet forage. We evaluated proso millet as a silage crop in comparison with conventional silage crops. Proso millet was sown on June 8 and harvested on September 5 at soft-dough stage. Corn and sorghum-sudangrass hybrid were planted on May 10 and harvested on September 10 at the half milk-line and soft-dough stages, respectively. The fermentation was evaluated at 1, 2, 3, 5, 10, 15, 20, 30, and 45 days after ensiling. Although forage yield of proso millet was lower than corn and sorghum-sudangrass hybrid, its relative feed value was greater than sorghum-sudangrass hybrid. Concentrations of dry matter (DM), crude protein, and water-soluble carbohydrate decreased commonly in the ensiling forage crops. The DM loss was greater in proso millet than those in corn and sorghum-sudangrass hybrid. The in vitro dry matter digestibility declined in the forage crops as fermentation progressed. In the early stages of fermentation, pH dropped rapidly, which was stabilized in the later stages. Compared to corn and sorghum-sudangrass hybrid, the concentration of ammonia-nitrogen was greater in proso millet. The count of lactic acid bacteria reached the maximum level on day 10, with the values of 6.96, 7.77, and 6.95 Log10 CFU/g fresh weight for proso millet, corn, and sorghum-sudangrass hybrid, respectively. As ensiling progressed, the concentrations of lactic acid and acetic acid of the three crops increased and lactic acid proportion became higher in the order of sorghum-sudangrass hybrid, corn, and proso millet. Overall, the shorter, fast-growing proso millet comparing with corn and sorghum-sudangrass hybrid makes this forage crop an alternative option, particularly in areas where agricultural inputs are limited. However, additional research is needed to evaluate the efficacy of viable strategies such as chemical additives or microbial inoculants to minimize ammonia-nitrogen formation and DM loss during ensiling.

Effects of sodium diacetate or microbial inoculants on aerobic stability of wilted rye silage

  • Li, Yan Fen;Wang, Li Li;Jeong, Eun Chan;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1871-1880
    • /
    • 2022
  • Objective: The primary goal was to identify the effectiveness of chemical or biological additives in delaying the deterioration of early-harvested wilted rye silage after exposure to air. Methods: Rye harvested as a whole plant at the early heading stage was wilted for 24 h. The wilted forage was divided into treatments including sodium diacetate (SDA) at 3 (SDA3) and 6 g/kg (SDA6), Lactobacillus plantarum (LP), L. buchneri (LB), or their equal mixture (LP+LB) at 1×106 colony-forming unit/g fresh matter. Results: After 60 d of conservation in 20-L silos, lactic acid was greater in LP and LP+LB silages than other treatments (102 vs 90.2 g/kg dry matter [DM]). Acetic acid was greatest in SDA6 (32.0 g/kg DM) followed by LB (26.1 g/kg DM) and was lowest in LP treatment (4.73 g/kg DM). Silage pH was lower with microbial inoculation and the lowest and highest values were observed in LP and untreated silages, respectively. After 60 d, neutral detergent fiber concentration was lowest in SDA6 silages, resulting in the greatest in vitro DM digestibility (846 g/kg DM). Aerobic stability was longest in SDA6 (176 h) followed by LB treatment (134 h). Instability after aerobiosis was greatest in LP silages (68 h), about 8 h less than untreated silages. After aerobic exposure, yeast and mold numbers were lowest in SDA6 silages, resulting in DM loss minimization. Exhaustion of acetic acid and lactic acid after aerobic exposure was lowest with SDA6 but greatest with untreated and LP silages. Conclusion: Treatment of early-cut wilted rye forage with SDA at 6 g/kg resulted in silages with higher feeding value and fermentation quality, and substantially delayed deterioration after aerobic exposure, potentially qualifying SDA at this load for promotion of silage quality and delaying aerobic spoilage of early-harvested (low DM) rye forage.

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

Ecological Characteristics of Buxus sinica Habitat Distributed on the Ridge of Gyeokjabong(Mt.), Bogildo (보길도 격자봉 일대 능선부에 분포하는 회양목 생육지의 생태적 특성)

  • Soo-Dong Lee;Min-Hwa Jin;Hyun-Kyung Kang;Chung-Hyeon Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.662-675
    • /
    • 2022
  • This study was intended to investigate and analyze the current status of the plant community structure in order to provide basic data for the systematic conservation and management of the Buxus sinica area appearing on the ridgeline connecting the Gyeokjabong(Mt.) and Keungiljae, on Bogildo Island. In consideration of location characteristics such as density, topography, and direction of B. sinica appearing in the shrub layers, a total of 26 sites were set as the survey area for representative vegetation communities or areas with changes in topography. According to DCA and TWINSPAN, it was classified into 6 communities, namely Carpinus turczaninovii-Deciduous broad-leaved, C. turczaninovii, C. turczaninovii-B. sinica, C. turczaninovii-Evergreen broad-leaved, Q. acuta, and D. trifidus-Q. acuta. The community dominated by C. turczaninovii maintains the status quo for the present moment, however, Q. acuta will dominate the surrounding area in the long term, so Q. acuta has high succesion potential. In the case of the Q. acuta and D. trifidus-Q. acuta communities, Q. acuta, known as the climax species of warm-temperate forests, will maintain dominant status. In a case of B. sinica, the community dominated by C. turczaninovii will remain in good status due to the topographical conditions, but the community dominated by Q. acuta growth difficulties are expected due to the high coverage. In the relationship between environmental factors and vegetation distribution, analysis showed that only soil pH affect vegetation distribution. Furthermore, the soil acidity (pH) was 3.78-5.30, the electrical conductivity was 0.186-0.543 dS/m, and the organic matter content was 2.25-2.89%.

Implications of the Transition into National Heritage System and the Enactment of Traditional Landscape Architecture (국가유산 체계전환 및 전통조경 법제화의 함의)

  • Hwang, Kwon-Soon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • After 60 years since the enactment of the cultural property protection act, Korea's national system of protecting what has been valued has been transformed into a 'National Heritage System'. To meet the new system, the classification of national heritage has been re-classified into three categories as cultural heritage, natural heritage, and intangible heritage. In accordance with the sub-classification, acts for cultural heritage act and intangible heritage has been amended and act for natural heritage has been enacted. Act for natural heritage defines natural heritage as natural objects or cultural heritage formed through the interaction between human beings and natural environment. The sub-classification are categorized as follows; animal, plant, geological and natural reserves, natural landscapes, historical-cultural landscapes, and mixed landscapes. It also allows creating traditional landscapes so that traditional way of landscaping can be encouraged and integrated with modern life within historic environment. In line with the new concept of traditional landscaping, existing practices will be also needed to be changed. Traditional landscaping will play a significant role in setting out the new administrative paradigm which focuses on more value preservation. This paper recommends that effective collaboration between government, experts of traditional landscaping, and owners should be established to integrate the new policy in practice.

Effect of foliar spraying 6-benzylaminopurine on the growth and flowering of Sedirea japonica seedling (6-benzylaminopurine의 엽면살포가 나도풍란 유묘의 생장 및 개화에 미치는 영향 분석)

  • Jiae An;Hyeong-Bin Park;Pyoung-Beom Kim;Hwan-Joon Park;Seongjun Kim;Chang-Woo Lee;Byoung-Doo Lee;Ju-Hyoung Baek;Nam-Young Kim;Jung-Eun Hwang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.155-164
    • /
    • 2023
  • Sedirea japonica is one of the critically endangered species in South Korea mostly due to artificial harms such as illegal collection and habitat destruction. Therefore, artificial propagation through improving germination rate, increasing growth, and controlling flowering is meaningful for the conservation and reintroduction of S. japonica. It is suggested that cytokinins are one of the multi-factors that contribute to plant growth and floral responses. Especially, exogenous cytokinins have been known to induce or promote shoot growth or earlier flowering in orchids. Therefore, it was investigated how the application of 6-benzylaminopurine (BA) influenced the growth and inflorescence of S. japonica. A foliar spray containing BA at 100, 200, 300, and 400 ppm was applied from 1st July to 30th December 2021. Leaf length, leaf length growth rate, leaf width, and width and length ratio were measured as growth-related factors. Visible inflorescence rate, inflorescence length, the number of flowers per inflorescence, and the distance between the stalks were measured as flowering-related factors. Growth-related factors except for leaf growth rate were not affected by BA treatments, while leaf growth rate was significantly increased by 200 ppm of BA treatment. The visible inflorescence rate increased by 200 ppm of BA treatment, and there seems an optimal concentration and threshold of BA treatment. An iterative experiment with more seedlings and measurement factors would be helpful to figure out the effects of exogenous BA treatment on S. japonica, and it can be applied for mass propagation.

Vegetation Structure and Population Dynamics of Berchemia racemosa Habitats (청사조(Berchemia racemosa) 자생지의 식생구조 및 개체군 동태 분석)

  • Beon, Mu-Sup;Kim, Young-Ha
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.679-690
    • /
    • 2008
  • The objectives of this study are to investigate and analyze the vegetation structure and population dynamics of Berchemia racemosa habitats in the Weolmyung park in Gunsan city, and base on that to seek the ecological habitat conservation plan for the Berchemia racemosa. In results, the Berchemia racemosa habitats are located at $81{\sim}93$ meters above the sea level, in steep seaside slope of a mountain. The soil texture are silt loam mainly and soil pH were $4.1{\sim}5$. The vascular plants in the Berchemia racemosa habitats has been analyzed as 61 taxa; 33 families, 51 genera, 54 species, 6 varieties, and 1 forms. Berchemia racemosa as a Specific plant species by floral region was the class V. Berchemia racemosa habitats were classified into 7 vegetation communities of Quercus serrata community(A1), Alnus firm a community(A2), Platycarya strobilacea community(A3), Robinia pseudoacacia community(A4) and 3 Pinus densiflora communities(B1, B2, B3). The importance value of Berchemia racemosa were 30%(A1), 15%(A2), 27%(A3), 65%(A4), 18%(B1), 45%(B2) and 35%(B3) on shrubs layer and 12, 27, 20, 18, 11, 18, 21 % on herb layer. The constant companion species with Berchemia racemosa were Stephanandra incisa and Ligustrum obtusifolium. Total 103 populations appear in the 7 Berchemia racemosa habitats. Their spatial distribution pattern were clumped for the most part. The average height was 133cm, the root color diameter was 4.4cm and the ramification branch number was 9.4. From the results of this study, it is suggested the continued monitoring and the active protection measures for the Berchemia racemosa habitats.

Mercury Contents of Paddy Soil in Korea and its Uptake to Rice Plant (우리나라 논 토양 중 수은함량과 벼 흡수이행)

  • Park, Sang-Won;Yang, Ju-Seok;Kim, Jin-Kyoung;Park, Byung-Jun;Kim, Won-Il;Choi, Ju-Hyeon;Kwon, Oh-Kyung;Ryu, Gab-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.1
    • /
    • pp.6-14
    • /
    • 2008
  • Objective of this study was to investigate the residual levels of mercury (Hg) in soil for "Top-rice" area and its uptake into rice plant for making sure food safety as compared to "Top-rice" & common rice produced from 2005 to 2006. Hg was analyzed with the direct mercury analyzer (DMA 80, Milestone, Italy), which implements the US/EPA method 7473. The average concentration of Hg in paddy soil was 0.031 mg/kg, which was below at 1/25-1/65 fold of the threshold levels (concern level 4 mg/kg, action level 10 mg/kg) for soil contamination designated by "The Soil Environment Conservation Law" in Korea. The maximum residue level (MRLs) for Hg residue in the polished rice is not designated in Korea. Therefore, Hg contents in the polished rice of "Top-rice" brand and common rice were compared to other country's criteria. Hg contents in the polished rice of "Top-rice" brand was 0.0018 mg/kg, which was lower at 1/10-1/30 fold than the MRLs, 0.02 mg/kg of China criteria and 0.05 mg/kg of Taiwan criteria, respectively. Hg were 0.02788, 0.00896, 0.00182, 0.00189, 0.00166, 0.00452 and 0.00145 mg/kg in soil, rice straw, unhulled rice, rice hulls, brown rice, rice bran, and polished rice produced in 2006 "Top-rice" area, respectively. For the ratio of Hg as compared to Hg contents in soil, there were 0.321 of rice straw ${\gg}$ 0.162 of rice bran ${\gg}$ 0.068 of rice hulls > 0.065 of unhulled rice > 0.060 of brown rice> 0.052 of polished rice. And, the slope of Hg uptakes was steeped as following order; rice straw ${\gg}$ rice bran ${\gg}$ rice hulls > unhulled rice > brown rice > polished rice. It means that the more slope steeped was the more uptakes. For the distribution of Hg uptaken, there was 83.8% into rice straw, and 16.2% into unhulled rice, 2.8% into rice hulls, 12.4% into brown rice, 3.5% into rice bran and 9.7% into polished rice. Consequently, it was appeared that the Hg contamination in the polished rice should not be worried in Korea.

Prospects for development of cosmetic industry using natural products in Chungbuk (충북지역의 천연 자원을 활용한 화장품 산업의 발전 전망)

  • Hwang, Hyung seo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.26-27
    • /
    • 2018
  • With entry into force of the Nagoya Protocol to promote the fair sharing of the benefits of accessing and utilizing genetic resources, much support has been given to research on the development of biomaterials and products using domestic natural resources. Conservation and resource-saving of native species became very important through Nagoya Protocol enactment. The trend of cosmetic industry has been shifing from use synthetic chemicals to natural biomaterials, due to the safety regulations on new materials, ban on animal experiments, and expansion of cosmeceuticals range. In addition, functional cosmetic range has been expanded from whitening, wrinkle improvement, and ultraviolet shielding, to hair loss, hair loss alleviation, acne relaxation, and moisturizing of atopic skin, thus causing the activation of research about field of efficacy evaluation on natural biomaterials and commercialization. Chungbuk province is fostering the bio industry as a key industry for regional economic growth. For this purpose, Osong Biotechnology Complex/Ochang Science Industrial Complex in middle area, Jecheon biovalley in northern region, and Chungju Enterprise city have been established, thus playing a pivotal role in Bio innovative cluster in Korea. In particular, it was established the osong cosmetics clinical research support center to develop the cosmetics industry in chungbuk, thereby supporting clinical trials, efficacy evaluations, overseas certification, and overseas market entry in order to advance into the global market. In addition, oriental plants such as astragalus propinquus, schisandra chinensis, eucommia, alpiniae oxyphyllae fructus and biancaea sappan are being actively studied as global cosmetic ingredients through the promotion of various national research and development projects using natural materials in chungbuk province. The chungbuk natural product industry is expected to grow further throughout cosmetics industry development in the future, as companies and research institutes are actively promoting the secure index of effective material in natural products and effective material commercialization.

  • PDF

Growth response and Variation of ecological niche breadth of Hibiscus hamabo, the endangered plant, according to Light, Moisture and Nutrient under elevated CO2 concentration and temperature (CO2농도 상승과 온도 상승조건에서 광, 수분, 유기물구배에 따른 멸종위기식물인 황근(Hibiscus hamabo)의 생육과 생태적 지위폭의 변화)

  • Lee, Soo-In;Lee, Eung-Pill;Kim, Eui-Ju;Park, Jae-Hoon;Cho, Kyu-Tae;Lee, Seung-Yeon;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • We investigated growth response and variation of ecological niche breadth of Hibiscus hamabo according to light, moisture and nutrient when global warming is proceeded by elevated $CO_2$ concentration and temperature. H. hamabo was cultivated in experimental condition in the greenhouse that are divided by control(ambient condition) and treatment(elevated $CO_2$ concentration and temperature). Light, moisture and nutrient gradients were treated within the control and the treatment. Although H. hamabo prefers higher light intensity(up to L3) to lowers', Hamabo mallow doesn't like excessive light intensity($787{\pm}77.76{\mu}mol\;m^{-2}s^{-1}$). Also, H. hamabo was difficult to grow in absent nutrient(0%) and excessive nutrient(20%). However, there was no trend with moisture gradients. The death rate of H. hamabo in the treatment was higher in all gradients except for the highest light intensity condition than control. It means that range of tolerance about light is narrowed when concentration of $CO_2$ gas and temperature is elevated. There was no trend of death rate according to moisture gradient, comparing between control and treatment. The death rate in all nutrient gradients within the treatment is lower than the controls'. It means that range of tolerance about nutrient is widened. The ecological niche breadth of H. hamabo in the treatment was narrower as 30.1% in light gradients but wider as 8.6% in moisture gradients and 30% in nutrient gradients than in the control. In the conclusion, when global warming is proceeded by elevated $CO_2$ concentration and temperature, growth of H. hamabo would be restricted by light intensity.