• Title/Summary/Keyword: Plant Transition

Search Result 240, Processing Time 0.027 seconds

Diagnosis of Vegetation for the Ecological Rehabilitation of Streams - The Case of the Namhan River - (하천의 생태적 복원을 위한 식생학적 진단 - 남한강을 중심으로 -)

  • Myung, Hyun;Kwon, Sang-Zoon;Kim, Chang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.98-106
    • /
    • 2002
  • This study was designed to present a river model with the aim of restoring the ecosystem and improving the landscape along the urban rivers on the basin of the Namhanl river, a core life channel for the National Capital regin. The revelation of botanical status, transition trend and correlation of plants might lead to providing the urban river restoration projects and ecological river formation projects with basic data for a model of ideal aquatic ecology and landscape. The outcomes of this study could be summed up as follows: 1. The plant communities of river flora found on the basin of the Namhan river could be categorized largely into 39 plant communities 2. Most diverse plants were distributed in the rivers lower reaches such as Unsim-ri where the protected zone of Paldang reservoir for city water borders the body of Jodae swamp where natural streams flow nearby. 3. One of the greatest threats to the biomass of the River Namhan is that the communities of such invasive alien plants as Panicum dichotomiflorum and Ambrosia artemisiifolia var. elatior dominate most parts of the area, a fact that has resulted in a reduced variety of plants and will, sooner or later, be likely to cause an ecological imbalance in the hitherto healthy Aquatic plant life. It is highly advisable to gradually diversify the species of trees and to return the plants bark to their original state since, besides the naturalized plants, plantations afforested with Erigeron canadensis and Erigeron annuus stocks in buckwheat field, Robinia Pseudo-accacia in riverside forest, Pinus rigida in terrestrial forest on the river basin and Larix leptolepis are anticipated to act as interceptors of normal migrations of the fluvial and terrestrial ecosystems. Finally, it seems also desirable to continue to explore the relationship between fluvial and terrestrial ecologies with the purpose of building up a model of natural streams in urban areas based on the surveyed factors for plant life, soil and landscape and, moreover, on the forecasting for overall influences derived from the rotation upon the ecosystem.

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

Four Embryophyte Introns and psbB Operon Indicate Chlorokybus as a Basal Streptophyte Lineage

  • Lee, Jung-Ho;James R. Manhart
    • ALGAE
    • /
    • v.17 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • The transition of plant life from aquatic algae to land to land plants was one of the major events in the history of life. However, in hypothesizing the exact evolutionary path of the transition, limited shared phenotypic characters in aquatic algae and land plants (embryophytes) have been a major hinderance. Chloroplast genomes contain characters useful in tracing evolutionary histories. Embryophyte chloroplast genomes are distinguished from algal cpDNAs by having over 20 group Ⅱ introns, some of which were gained during the transition from algae to embryophytes (Manhart and Palmer 1990; Lew and Manhart 1993;Lee and Manhart 2002). Here we examine a gene cluster that, in land plants, contains psbB, psbT, psbH, petB and petD with introns found in petB and petD (petB.i and petD.i). In addition the presence/absence of introns in trnA and trnI (trnA.i and trnI.i) were determined in all five major lineages of charophytes. We found that the psbB gene cluster occurs in most surveyed charophytes and embryophytes except Spirogyra (Zygnematales) which lacks it due to intra-genomic rearrangement. All four introns are absent in Chlorokybus but present in some or all of the other four charophyte lineages (Klebsormidiales, Zygnematales, Coleochaetales, and Charales). In addition, Chlorokybus is distinguished from other charophytes and embryophytes by having an unusually long spacer (over 2 kb) between psbH-petB. The results indicate that Chlorokybus diverged before the intron gains but after psbB gene cluster formation, placing the other charophyte lineages closer to embryophytes.

Study of stabilizing and efficacy evaluation in human of Oleanoic acid with poly-glyceryl nano emulsion system (올레아노익산의 폴리글리세릴계 나노에멀젼에서의 안정화 및 인체적용 유효성평가에 대한 연구)

  • Han, Sang-Keun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.157-164
    • /
    • 2015
  • Oleanolic acid is known as which anti-cancer, anti-sinhaeng angiogenic, anti-inflammatory, antioxidant and anti-wrinkle effects. We focused on the antioxidant activity of oleanolic acid was separated from the natural plant and It was confirmed that the whitening effect. In this study, oleanolic acid was stabilized by polyglyceryl surfactant which from natural origin with only a simple stirring operation, and compared with lecithin liposome that was manufactured with high cost facility. The transdermal transition rate of 0.4% oleanolic acid polyglyceryl nanoemulsion was 95%, and it was simillar with lecithin liposome of 92%. 65% of 3hr transdermal transition rate of polyglyceryl nanoemulsion indicate charistiristcs of quick release, compared with 45% of lecithin liposome's 3hr transdermal transition rate. In the in-vivo clinical trial test, polyglyceryl nanoemulsion of 0.4% oleanolic acid was higher 25% in 2nd week, 58% in 4th and 8th weeks than non-added oleanolic acid emulsion.

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman;Sundd, Monica;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Analyzing Relationship between Satellite-Based Plant Phenology and Temperature (위성영상을 기반으로 도출된 식물계절과 기온요인과의 상관관계 분석)

  • CHOI, Chul-Hyun;JUNG, Sung-Gwan;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.30-42
    • /
    • 2016
  • Climate change are known to have had enormous impacts on plant phenology and thus to have damage on other species which are interacted within ecosystem. In Korea, however, it is difficult to analyze the relationship between climate and phenology due to the limitation of measurement data of plant phenological records. In this study, to be effective analysis of SOG(start of growing season), we used phenological transition dates by using satellite data. Then, we identified the most influential variable in variation of SOG throughout the relationship between SOG and temperature factors. As a result, there is a strong correlation between the SOG and April temperature, TSOGmin($3^{\circ}C$, 12days). This study is expected to be used for predicting plant phenological change using climate change scenario data.

Evaluation of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under SBLOCA (소규모 냉각재 상실사고하의 원자로 압력용기에 대한 확률론적 파괴역학 평가)

  • Kim, Jong Wook;Lee, Gyu Mahn;Kim, Tae Wan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT.

  • PDF

Greenhouse Gas Mitigation Effect Analysis by Establishing Additional Heat Storage System for Combined Heat and Power Plant (열병합발전소에서의 축열조 증설에 의한 온실가스 감축 효과 분석)

  • Kim, Shang Mork;Yoon, Joong Hwan;Lim, Kyoung Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.175-189
    • /
    • 2011
  • In this research, we describe the methodology and the quantification about GHG reduction effects, expected by optimization of operation mode according to establishing additional heat storage system of Bundang Combined Cycle Power Plant. As an intermediate form of General Combined Cycle Power Plant and Heat supply only district heating plant, Bundang Combined Cycle Power Plant(and Ilsan, Anyang, Bucheon) is possible to satisfy demand for the electrical load and thermal load capacity at the same time through changes to the operation mode itself. Therefore, through the operating transition of high-efficiency mode that the condenser cooling water is recovered and supplied to district heat and cooling, establishing additional heat storage system have flexible supply ability at the power and heat market. In this research, We calculated using the operating performance for the last three years(2008~2010) and efficiency of each mode-specific values. As a result, GHG reduction effects were calculated as $97.95kg_{-}CO_2/Gcal$ per heat energy 1 Gcal supplied at the heat storage system and we expected emmision reduction effect about $13,500Ton_{-}CO_2/yr$.

Partitioning of Heavy Metals between Rice Plant and Limestone-stabilized Paddy Soil Contaminated with Heavy Metals (석회석을 이용하여 안정화한 중금속오염 논토양에서 토양과 식물체(벼) 간의 중금속 전이특성)

  • Koh, Il-Ha;Kim, Eui-Young;Kwon, Yo Seb;Ji, Won Hyun;Joo, Wanho;Kim, Jinhong;Shin, Bok Su;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.90-103
    • /
    • 2015
  • The agricultural soil, meets soil environmental standards whereas agricultural product from the same soil does not meet permissible level of contaminants, is identified in the vicinity of the abandoned mine in Korea. This study estimated the stabilization efficiency of Cd and Pb using limestone through the flood pot test for this kind of agricultural paddy soil. We had the concentration of the monitored contaminants in soil solution for 4 months and analyzed fractionations in soil and concentrations in rice plant. In soil solution of plow layer, the reductive Mn had been detected constantly unlike Fe. The concentrations of Mn in limestone amended soil was relatively lower than that in control soil. This reveals that the reductive heavy metals which become soluble under flooded condition can be stabilized by alkali amendment. This also means that Cd and Pb associated with Mn oxides can be precipitated through soil stabilization. Pb concentrations in soil solution of amended conditions were lower than that of control whereas Cd was not detected among all conditions including control. In contaminants fractionation of soil analysis, the decreasing exchangeable fraction and the increasing carbonates fraction were identified in amended soil when compared to control soil at the end of test. These results represent the reduction of contaminants mobility induced by alkali amendment. The Cd and Pb contents of rice grain from amended soil also lower than that of control. These result seems to be influenced by reduction of contaminants mobility represented in the results of soil solution and soil fractionation. Therefore contaminants mobility (phytoavailability) rather than total concentration in soil can be important factor for contaminants transition from soil to agricultural products. Because reduction of heavy metal transition to plant depends on reduction of bioavailability such as soluble fraction in soil.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.