DOI QR코드

DOI QR Code

Analyzing Relationship between Satellite-Based Plant Phenology and Temperature

위성영상을 기반으로 도출된 식물계절과 기온요인과의 상관관계 분석

  • CHOI, Chul-Hyun (Bureau of Ecological Conservation Research, National Institute of Ecology) ;
  • JUNG, Sung-Gwan (Dept. of Landscape Architecture, Kyungpook National University) ;
  • PARK, Kyung-Hun (Dept. of Environmental Engineering, Changwon National University)
  • 최철현 (국립생태원 생태보전연구본부) ;
  • 정성관 (경북대학교 조경학과) ;
  • 박경훈 (창원대학교 환경공학과)
  • Received : 2015.11.07
  • Accepted : 2016.01.12
  • Published : 2016.03.31

Abstract

Climate change are known to have had enormous impacts on plant phenology and thus to have damage on other species which are interacted within ecosystem. In Korea, however, it is difficult to analyze the relationship between climate and phenology due to the limitation of measurement data of plant phenological records. In this study, to be effective analysis of SOG(start of growing season), we used phenological transition dates by using satellite data. Then, we identified the most influential variable in variation of SOG throughout the relationship between SOG and temperature factors. As a result, there is a strong correlation between the SOG and April temperature, TSOGmin($3^{\circ}C$, 12days). This study is expected to be used for predicting plant phenological change using climate change scenario data.

기후변화는 식물계절주기에 큰 영향을 미쳤으며, 이로 인해 유기적인 상호관계 하에 있는 생태계 내 다른 생물들까지도 피해를 받는다는 것이 밝혀졌다. 그러나 국내의 경우 식물계절 조사 자료의 구축이 미흡하여 기후와 식물계절간 관계와 관련된 연구를 수행하는데 있어 어려움이 있다. 이에 본 연구에서는 위성영상을 이용한 식물계절 분석방법을 사용하여 효율적으로 국내 산림의 생육개시일을 도출하였다. 또한 생육개시일-기온요인간 상관관계를 분석하여 생육개시일 변동에 가장 영향력이 큰 변수를 도출해보고자 하였다. 분석결과, 국내 산림지역의 생육개시일은 4월 평균기온 그리고 TSOGmin($3^{\circ}C$, 12일)과 가장 상관성이 큰 것으로 나타났다. 이러한 결과는 추후 미래의 기후변화 시나리오 자료를 통해 식물계절 변화를 예측할 수 있는 유용한 자료로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. Badeck, F.W, A. Bondeau, K. Bottcher, D. Doktor, W. Lucht, J. Schaber and S. Sitch. 2004. Responses of spring phenology to climate change. New Phytologist 162(2):295-309. https://doi.org/10.1111/j.1469-8137.2004.01059.x
  2. Both, C., S. Bouwhuis, C.M. Lessells and M.E. Visser. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441(7089):81-83. https://doi.org/10.1038/nature04539
  3. Cannell, M.G.R. and R.I. Smith. 1983. Thermal time, chill days and prediction of budburst in picea sitchensis. Journal of Applied Ecology:951-963.
  4. Chmielewski, F-M. and T. Rotzer. 2001. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology 108(2):101-112. https://doi.org/10.1016/S0168-1923(01)00233-7
  5. Chmielewski, F-M., A. Muller and E. Bruns. 2004. Climate changes and trends in phenology of fruit trees and field crops in germany, 1961-2000. Agricultural and Forest Meteorology 121(1):69-78. https://doi.org/10.1016/S0168-1923(03)00161-8
  6. Choi, C.H. 2015. Climate change impact assessment and predictive model on forest ecology using MODIS. Ph.D, Kyungpook National Univ., Daegu, Korea (최철현. 2015. MODIS를 활용한 산림생태의 기후변화 영향평가 및 예측모형. 경북대학교 대학원 박사학위논문).
  7. Choi, C.H. and S.G. Jung. 2014. Analysis of the MODIS-based vegetation phenology using the HANTS algorithm. Journal of the Korean Association of Geographic Information Studies 17(3): 20-38 (최철현, 정성관. 2014. HANTS 알고리즘을 이용한 MODIS 영상기반의 식물계절 분석. 한국지리정보학회지 17(3):20-38). https://doi.org/10.11108/kagis.2014.17.3.020
  8. Daly, C., J.W. Smith, J.I. Smith and R.B. McKane. 2007. High-resolution spatial modeling of daily weather elements for a catchment in the Oregon cascade mountains, United States. Journal of Applied Meteorology and Climatology 46(10):1565-1586. https://doi.org/10.1175/JAM2548.1
  9. Frich, P., L.V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A.M.G. Klein Tank and T. Peterson. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research 19(3):193-212. https://doi.org/10.3354/cr019193
  10. Ho, C.H., E.J. Lee, I. Lee and S.J. Jeong. 2006. Earlier spring in Seoul, Korea. International Journal of Climatology 26 (14):2117-2127. https://doi.org/10.1002/joc.1356
  11. Huete, A.R. and H.Q. Liu. 1994. An error and sensitivity analysis of the atmospheric-and soil-correcting variants of the NDVI for the MODIS-EOS. Geoscience and Remote Sensing, IEEE Transactions on 32(4):897-905. https://doi.org/10.1109/36.298018
  12. Huete, A., C. Justice and H. Liu. 1994. Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment 49(3):224-234. https://doi.org/10.1016/0034-4257(94)90018-3
  13. Jeong, S.J., C.H. Ho and J.H. Jeong. 2009. Increase in vegetation greenness and decrease in springtime warming over East Asia. Geophysical Research Letters 36(2):L02710. https://doi.org/10.1029/2008GL036583
  14. Jeong, S.J., C.H. Ho, S.D. Choi, J.W. Kim, E.J. Lee and H.J. Gim. 2013. Satellite data-based phenological evaluation of the nationwide reforestation of South Korea. PloS One 8(3):e58900. https://doi.org/10.1371/journal.pone.0058900
  15. Jo, H.K. and T.W. Ahn. 2008. Differences in phenological phases of plants subsequent to microclimate change. Korean Journal of Environment and Ecology 22(3):221-229 (조현길, 안태원. 2008. 미기후 변화에 따른 식물계절 차이. 한국환경생태학회지 22(3):221-229).
  16. Jones, T. and W. Cresswell. 2010. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change? Journal of Animal Ecology 79(1):98-108. https://doi.org/10.1111/j.1365-2656.2009.01610.x
  17. Julien, Y. and J.A. Sobrino. 2009. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing 30(13):3495-3513. https://doi.org/10.1080/01431160802562255
  18. Jung, J.E., E.Y. Kwon, U. Chung and J.I. Yun. 2005. Predicting cherry flowering date using a plant phenology model. Korean Journal of Agricultural and Forest Meteorology 7(2):148-155 (정재은, 권은영, 정유란, 윤진일. 2005. 생물계절 모형을 이용한 벚꽃 개화일 예측. 2005. 한국농림기상학회지 7(2):148-155).
  19. Kang, H.S. 2013. Review: Ecological responses of plants to climate change: Research trends and its applicability in Korea. Korean Journal of Ecology and Environment 46(3):319-331 (강혜순. 2013. 기후변화에 대한 식물의 생태적 반응: 연구동향과 한국에서의 적용가능성. 생태와 환경. 46(3):319-331). https://doi.org/10.11614/KSL.2013.46.3.319
  20. Kim, M.K., M.S. Han, D.H. Jang, S.G. Baek, W.S. Lee, Y.H. Kim and S. Kim. 2012. Production technique of observation grid data of 1km resolution. Journal of Climate Research 7(1):55-68 (김맹기, 한명수, 장동호, 백승균, 이우섭, 김연희. 2012. 1km 해상도의 관측 격자자료 생산 기술. 기후연구 7(1):55-68).
  21. Kim, N.S., Y.C. Cho, S.H. Oh, H.J. Kwon and G.S. Kim. 2014. A phenology modelling using MODIS time series data in South Korea. Korean Journal of Ecology and Environment 47(3):186-193 (김남신, 조용찬, 오승환, 권혜진, 김경순. 2014. MODIS 시계열 자료 및 Timesat 알고리즘에 기초한 남한 지역 식물계절 분석. 생태와 환경 47(3):186-193). https://doi.org/10.11614/KSL.2014.47.3.186
  22. Kim, G.S. and H.G. Park. 2010. Estimation of drought index using CART algorithm and satellite data. Journal of the Korean Association of Geographic Information Studies 13(1):128-141 (김광섭, 박한균. 2010. CART기법과 위성자료를 이용한 향상된 공간가뭄지수 산정. 한국지리정보학회지 13(1):128-141).
  23. Linderholm, H.W. 2006. Growing season changes in the last century. Agricultural and Forest Meteorology 137(1):1-14. https://doi.org/10.1016/j.agrformet.2006.03.006
  24. Mendez-Alonzo, R., F. Pineda-Garcia, H. Paz, J.A. Rosell, and M.E. Olson. 2013. Leaf phenology is associated with soil water availability and xylem traits in a tropical dry forest. Trees 27(3):745-754. https://doi.org/10.1007/s00468-012-0829-x
  25. Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. ALMKÜBLER, P. Bissolli, O. Braslavska and A. Briede. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12(10):1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  26. Myneni, R.B., C.D. Keeling, C.J. Tucker, G. Asrar and R.R. Nemani. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698-702. https://doi.org/10.1038/386698a0
  27. Nuttonson, M.Y., A.E. Murneek and R.O. Whyte. 1948. Some preliminary observations of phenological data as a tool in the study of photoperiodic and thermal requirements of various plant material. Vernalization and Photoperiodism: 129-143.
  28. Roerink, G.J., M. Menenti and W. Verheof. 2000. Reconstructing cloudfree NDVI composites using fourier analysis of time series. International Journal of Remote Sensing 21(9):1911-1917. https://doi.org/10.1080/014311600209814
  29. Schwartz, M.D., R. Ahas and A. Aasa. 2006. Onset of spring starting earlier across the Northern hemisphere. Global Change Biology 12(2):343-351. https://doi.org/10.1111/j.1365-2486.2005.01097.x
  30. Shin, H.J., M.J. Park, E.H. Hwang, H.S. Chae and S.J. Kim. 2015. A study of spring drought using Terra MODIS satellite image -for the Soyanggang dam watershed-. Journal of the Korean Association of Geographic Information Studies 18(4):145-157 (신형진, 박민지, 황의호, 채효석, 김성준. 2015. Terra MODIS 위성영상을 이용한 봄 가뭄 연구 - 소양강댐유역을 대상으로-. 한국지리정보학회지 18(4):145-157). https://doi.org/10.11108/kagis.2015.18.4.145
  31. Stenseth, N.C. and A. Mysterud. 2002. Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences of the United States of America 99:13379-13381.
  32. Tucker, C.J., D.A. Slayback, J.E. Pinzon, S.O. Los, R.B. Myneni and M.G. Taylor. 2001. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology 45(4):184-190. https://doi.org/10.1007/s00484-001-0109-8
  33. White, M.A., De Beurs, M. Kirsten, K. Didan, D.W. Inouye, A.D. Richardson, O.P. Jensen, J. O'keefe, G. Zhang and R.R. Nemani. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology 15(10):2335-2359. https://doi.org/10.1111/j.1365-2486.2009.01910.x

Cited by

  1. Predicting Future Terrestrial Vegetation Productivity Using PLS Regression vol.20, pp.1, 2016, https://doi.org/10.11108/kagis.2017.20.1.042
  2. 중국 동북3성에서의 옥수수 수확량과 위성기반의 식생 지수 및 농업기후요소와의 상관성 연구 vol.33, pp.5, 2016, https://doi.org/10.7780/kjrs.2017.33.5.2.10
  3. 광릉숲 천연활엽수림의 수종별 낙엽 현상과 질소 재전류 특성 vol.21, pp.3, 2016, https://doi.org/10.5532/kjafm.2019.21.3.208
  4. 고해상도 위성자료를 활용한 마른 잎 탐지 vol.36, pp.3, 2016, https://doi.org/10.7780/kjrs.2020.36.3.1
  5. 온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석 vol.109, pp.4, 2016, https://doi.org/10.14578/jkfs.2020.109.4.361