Browse > Article
http://dx.doi.org/10.4490/ALGAE.2002.17.1.053

Four Embryophyte Introns and psbB Operon Indicate Chlorokybus as a Basal Streptophyte Lineage  

Lee, Jung-Ho (Institute of Systematic Botany, University of Ziirich)
James R. Manhart (Department of Biology, Texas A&M University)
Publication Information
ALGAE / v.17, no.1, 2002 , pp. 53-58 More about this Journal
Abstract
The transition of plant life from aquatic algae to land to land plants was one of the major events in the history of life. However, in hypothesizing the exact evolutionary path of the transition, limited shared phenotypic characters in aquatic algae and land plants (embryophytes) have been a major hinderance. Chloroplast genomes contain characters useful in tracing evolutionary histories. Embryophyte chloroplast genomes are distinguished from algal cpDNAs by having over 20 group Ⅱ introns, some of which were gained during the transition from algae to embryophytes (Manhart and Palmer 1990; Lew and Manhart 1993;Lee and Manhart 2002). Here we examine a gene cluster that, in land plants, contains psbB, psbT, psbH, petB and petD with introns found in petB and petD (petB.i and petD.i). In addition the presence/absence of introns in trnA and trnI (trnA.i and trnI.i) were determined in all five major lineages of charophytes. We found that the psbB gene cluster occurs in most surveyed charophytes and embryophytes except Spirogyra (Zygnematales) which lacks it due to intra-genomic rearrangement. All four introns are absent in Chlorokybus but present in some or all of the other four charophyte lineages (Klebsormidiales, Zygnematales, Coleochaetales, and Charales). In addition, Chlorokybus is distinguished from other charophytes and embryophytes by having an unusually long spacer (over 2 kb) between psbH-petB. The results indicate that Chlorokybus diverged before the intron gains but after psbB gene cluster formation, placing the other charophyte lineages closer to embryophytes.
Keywords
charophytes; cholrokybys; group Ⅱ intron; petB; petD; psbB operon; streptophytes; trnA; trnl;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schmitz-Linneweber C., Maier R.M., Alcaraz J.P., Cottet A, Herrmann R.G. and Mache, R 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol. Biol. 45: 307-315.   DOI   ScienceOn
2 Lemieux C., Otis C. and Turmel M. 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649-652.   DOI   ScienceOn
3 Qiu Y.-L.and Palmer J.D. 1999. Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci. 4: 26-30.
4 Sluiman H.J. 1985. A cladistic evaluation of the lower and higher green plants (Viridiplantae). Pl. Syst. Evol. 149: 217-232.   DOI
5 Wakasugi T., Nagai T., Kapoor M., Sugita M., Ito M., Ito S., Tsudzki J., Nakashima K., Tsudzuki T., Suzuki Y., Hamada A., Ohta T., Inamura A., Yoshinaga K. and Sugiura M. 1997. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of the genes possibly involved in chloroplast division. Proc. Natl. Accad. Sci. U.S.A. 94:5967-5972.   DOI   ScienceOn
6 Wilcox L.W., Fuerst P.A. and Floyd G.L. 1993. Phylogenetic relationships of four charophycean green algae inferred from complete nuclear-encoded small.subunit rRNA gene sequences. Amer. J. Bot. 80: 1028-1033.   DOI   ScienceOn
7 Ohyama K, Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., Umesono K, Shiki Y., Takeuchi M., Chang Z., Aota S.-I., Inokuchi H. and Ozeki H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574.   DOI
8 Lee J. and Manhart J.R. 2002. The Chioroplast rpl23 gene cluster of Spirogyra maxima (Charophyceae) shares many similarities with the angiosperm rpl23 operon. Algae17: 1-10.   과학기술학회마을   DOI   ScienceOn
9 Rogers C.E., Mattox K.R and Stewart K.D. 1980. The zoospore of Chlorokybus atmophyticus, a charophyte with sarcinoid growth habit. Amer. J. Bot. 67: 774-783.   DOI   ScienceOn
10 Hupfer H., Swiatek M., Hornung S., Hermann R.G., Maier R.M., Chiu W.L. and Sears B. 2000. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes. Mol. Gen. Genet. 263: 581-585.
11 Douglas S.E. and Penny S.L. 1999. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48: 236-244.   DOI   ScienceOn
12 Bremer, K 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369-385.   DOI
13 Melkonian M., Marin B. and Surek B. 1995. Phylogeny and Evolution of the algae. In Arai, R, Kato M. and Doi, Y. (eds.). Biodiversityand Evolution, National Science Museum Foundation. Tokyo. 153-176
14 Glockner G., Rosenthal A. and Valentin K 2000. The structure and gene repertoire of an ancient red algal plastid genome. J. Mol. Evol. 51: 382-390.   DOI
15 Mattox KR and Stewart KD. 1983. Classification of the green algae: A concept based on comparative cytology. In Irvine D.E.G. and John D.M. (eds). Systematics of the Green Algae. Academic Press. London. pp. 29-72.
16 Qiu Y.-L., Cho Y.,Cox J.C. and Plamer J.D. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671-674   DOI   ScienceOn
17 Manhart J.R and Palmer J.D. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345: 268-270.   DOI   ScienceOn
18 Reith M. and Munholl and J. 1995. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 13: 333-335.   DOI
19 Manhart J.R, Howsaw RW. and Palmer J.D. 1990. Unique chloroplast genome in Spirogyra maxima (Chlorophyta) revealed by physical and gene mapping. J. Phycol. 26: 490-494.   DOI
20 Karol K.G., McCourt R.M., Cimino M.T. and Delwiche C. 2001. The closest living relatives of land plants. Science 294: 2351-2353.   DOI   ScienceOn
21 Qiu Y-L. and Lee J. 2000. Transition to a land flora: A molecular phylogenetic perspective. J. Phycol. 36: 799-802.   DOI   ScienceOn
22 Sato S., Nakamura Y., Kaneko T., Asamizu E. and Tabata S. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6: 283-290.   DOI   ScienceOn
23 Lew K.A. and Manhart J.R 1993. The rps12 gene in Spirigyra maxima (Chlorophyta) and its evolutionary significance. J. Phycol. 29:500-505.   DOI   ScienceOn
24 Bhattacharya D. and Medlin L. 1998. Algal phylogeny and the origin of land plants. Plant Physiol. 116: 9-15.   DOI   ScienceOn
25 Hiratsuka J., Shimada H. and Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C.-R., Meng B.-Y., Li Y.-Q., Kanno A, Nishizawa Y., Hirai A., Shinozaki K. and Sugiura M. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recommbination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194.   DOI
26 Bhattacharya D., Weber K, An S.S. and Berning-Koch W. 1998. Actin phylogeny identifies Mesostigma virideas a flagellate ancestor of the land plants. J. Mol. Evol. 47: 544-550.   DOI   ScienceOn
27 Kowallik K.V., Stoebe B. and Schaffran I. 1995. The Chloroplast Genome of a chlorophyll a+c-containing Alga, Odoniella sinensis. Plant Mol. Biol. Rep. 13: 336-342.   DOI
28 Wolfe K.H., Morden C.W. and Palmer J.D. 1992. Function and evolution of a minimal plastid genome from a nonphoto-synthetic parasitic plant. Proc. Nail. Acad. Sci. U.S.A. 89:10648-10652.   DOI   ScienceOn
29 Stirewalt V.L., Michalowski C.B., Luffelhardt W., Bohnert H.J. and Bryant D.A. 1995. Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol. Biol. Rep. 13: 327-332.   DOI
30 Shinozaki K., Ohme M. and Tanaka M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO Journal 5: 2043-2049.
31 Turmel M., Otis C. and Lemieux C. 1999. The complete ch1oroplast DNA sequence of the green alga Nephroselmis olivacea:insights into the architecture of ancestral chloroplast genomes. Proc. Natl. Acad. Sd. U.S.A. 96: 10248-10253.   DOI   ScienceOn
32 Hoshaw R.W. 1980. Systematics of the Zygnemataceae (Chlorophyceae). II. Zygospore-wall structure in Sirogonium and a taxonomic proposal. J. Phycol. 16: 242-250.   DOI
33 Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T. and Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sd. USA. 91: 9794-9798.   DOI   ScienceOn
34 Mishler B.D. and Churchill S.P. 1985. Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305-328.   DOI
35 Baldauf S.L., Manhart J.R and Palmer J.D. 1990. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc. Natl. Acad. Sci. U.S.A. 87:5317-5321.   DOI   ScienceOn
36 Kato T., Kaneko T. Sato S., Nakamura Y. and Tabata S. 2000. Complete structure of the chloroplast genome of a legume, Lotus japonicue. DNA Res. 7: 323-330.   DOI   ScienceOn
37 Kranz H.D., Miks D., Siegler M.-L., Capesius I., Sensen C.W. and Huss V.A.R. 1995. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribo-somal RNA gene sequences. J. Mol. Evol. 41: 74-84.   DOI   ScienceOn