• Title/Summary/Keyword: Plant Scheduling

Search Result 105, Processing Time 0.025 seconds

Effects of Interrupted Wetness Periods on Conidial Germination, Germ Tube Elongation and Infection Periods of Botryosphaeria dothidea Causing Apple White Rot

  • Kim, Ki Woo;Kim, Kyu Rang;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Responses of Botryosphaeria dothidea to interrupted wetness periods were investigated under in vivo and in vitro conditions. Conidia of B. dothidea were allowed to germinate on apple fruits under wetting condition at $25^{\circ}C$ for 5 hr. They were air-dried for 0, 1, 2 or 4 hr, and then rewetted at $25^{\circ}C$ for 5 hr. Following an initial wetness period of 5 hr, 83% of the conidia germinated. The percent conidial germination increased to 96% when wetting was extended continuously another 5 hr. However, no further conidial germination was observed when wetting was interrupted by dry periods of 1, 2 and 4 hr, resulting in 83, 81 and 82%, respectively. The mean length of the germ tubes was $37{\mu}m$ after 5 hr of wetting and elongated to $157{\mu}m$ after 10 hr of continuous wetting. On the other hand, interruption of wetting by a dry period of 1 hr or longer after the 5 hr of initial wetting arrested the germ tube elongation at approximately $42{\mu}m$ long. Prolonged rewetting up to 40 hr did not restore germ tube elongation on slide glasses under substrate treatments. Model simulation using weather data sets revealed that ending infection periods by a dry period of at least 1 hr decreased the daily infection periods, avoiding the overestimation of infection warning. This information can be incorporated into infection models for scheduling fungicide sprays to control apple white rot with fewer fungicide applications.

CONDITION MONITORING USING EMPIRICAL MODELS: TECHNICAL REVIEW AND PROSPECTS FOR NUCLEAR APPLICATIONS

  • Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.49-68
    • /
    • 2008
  • The purpose of this paper is to extensively review the condition monitoring (CM) techniques using empirical models in an effort to reduce or eliminate unexpected downtimes in general industry, and to illustrate the feasibility of applying them to the nuclear industry. CM provides on-time warnings of system states to enable the optimal scheduling of maintenance and, ultimately, plant uptime is maximized. Currently, most maintenance processes tend to be either reactive, or part of scheduled, or preventive maintenance. Such maintenance is being increasingly reported as a poor practice for two reasons: first, the component does not necessarily require maintenance, thus the maintenance cost is wasted, and secondly, failure catalysts are introduced into properly working components, which is worse. This paper first summarizes the technical aspects of CM including state estimation and state monitoring. The mathematical background of CM is mature enough even for commercial use in the nuclear industry. Considering the current computational capabilities of CM, its application is not limited by technical difficulties, but by a lack of desire on the part of industry to implement it. For practical applications in the nuclear industry, it may be more important to clarify and quantify the negative impact of unexpected outcomes or failures in CM than it is to investigate its advantages. In other words, while issues regarding accuracy have been targeted to date, the concerns regarding robustness should now be concentrated on. Standardizing the anticipated failures and the possibly harsh operating conditions, and then evaluating the impact of the proposed CM under those conditions may be necessary. In order to make the CM techniques practical for the nuclear industry in the future, it is recommended that a prototype CM system be applied to a secondary system in which most of the components are non-safety grade. Recently, many activities to enhance the safety and efficiency of the secondary system have been encouraged. With the application of CM to nuclear power plants, it is expected to increase profit while addressing safety and economic issues.

A Mixed Reality Based Interface for Planing Layouts (공간 배치를 위한 혼합현실 기반의 인터페이스)

  • Kang, Hyun;Lee, Gun A.;Son, Wook-Ho
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2007
  • Space planning is one of the popular applications of VR technology including interior design, architecture design, and factory layout. In order to provide easier methods to accommodate physical objects into virtual space planning task, we suggest applying mixed reality (MR) interface. We describe our hardware and software of our MR system designed according to requirements of the application domain. In brief, our system hardware consists of a video see-through display with a touch screen interface, mounted on a mobile platform, and we use screen space 3D manipulations to arrange virtual objects within the MR scene. Investigating the interface with our prototype implementation, we are convinced that our system will help users to design spaces in more easy and effective way.

  • PDF

A Heuristic Algorithm for Power Plant Coal Supply Planning Problems (화력발전소 원료 공급계획을 위한 휴리스틱 알고리즘)

  • Kim, Chul-Yeon;Moon, Hyung-Gen;Choi, Gyung-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.132-143
    • /
    • 2011
  • This paper deals with a coal supply planning problem for power plants. We propose a mathematical optimization model to make decisions for coal pile sections, movement of reclaimers, and operation time of conveyor belts. The objective of the proposed model is to minimize the total operation time of conveyor belts and total movement time of reclaimers. The algorithm firstly selects a pile section by considering both the location of reclaimers and the stock amount on that pile section. And then the shortest path from the selected pile section has to be put into the operation schedule and check whether the total operation time is satisfied. Then finally the new schedule is updated. To this end, we have tested the proposed algorithm comparing with the general standard optimization package for the simplified problem SCSPP. From the numerous test runs for comparing with the existing coal supply scheduling methods, We see that the proposed model may improve the coal supply operation by reducing significant coal supply costs.

Proactive Approach for Biofouling Control: Consequence of Chlorine on the Veliger Larvae of Mytilus edulis under Laboratory Condition

  • Haque, Niamul;Cho, Daechul;Lee, Jeong Mee;Lee, Dong Su;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.375-380
    • /
    • 2014
  • Macro fouling due to blue mussels (Mytilus edulis) has affected negatively on the operation efficiency and eventual system failure of offshore structures and coastal power stations. A certain range of chlorine (0.05, 0.1, 0.3, 0.5, 0.7 and 1.0 mg/L) was applied on the mussel larvae to identify the survival rate with respect to various exposure times under laboratory condition. The ciliary movement of the larvae was used to check their survival. The 1.0 mg/L of chlorine shows to 97% of larvae mortality whereas 0.7 mg/L of chlorine shows only 16% of larvae mortality. Minimum exposure times for 100% larvae mortality ranged from 300 to 20 min for increasing concentrations of chlorine (0.05~1.0 mg/L). It was found that 1 mg/L of chlorine was 4 times more efficient than 0.7 mg/L of that, and 15 times more than 0.05 mg/L of chlorine dose. Data collected and analyzed here will help plant operators to optimize chlorine dosage and its scheduling.

On-Line Condition Monitoring of Electrical Equipment Using Temperature Sensor (온도센서를 이용한 전력설비의 온라인 상태 감시)

  • Choi, Yong-Sung;Kim, Sun- Jae;Kim, Yeong-Min;Song, Hwao-Kee;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • Condition monitoring technologies allow achieving this goal by minimizing downtime through the integrated planning and scheduling of repairs indicated by condition monitoring techniques. Thermal runaways induced by conduction problems deteriorate insulating material and cause disruptive dielectric discharges resulting in arcing faults. Therefore, having the ability to directly measure the temperature of the contacts while in service will provide more information to determine the true condition of the equipment. It allows connective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on -line condition monitoring of energized equipment is applicable both as stand alone system and with an interface for power quality monitoring system. The paper presents the results of wireless temperature monitoring: of electrical equipment at a power plant.

A framework of Plant Simulation for a Construction of a Digital Shipyard (디지털 조선소 구축을 위한 물류 모델 프레임워크)

  • Woo, Jong-Hun;Lee, Kwang-Kook;Jung, Ho-Rim;Kwon, Young-Dae;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.165-174
    • /
    • 2005
  • Recently, world leading companies on manufacturing field are trying to adopt a PLM methodology, which is a new production paradigm, for a survival and strengthening the competitiveness. Some projects for a digital shipyard including a methodology of a digital simulation framework are going on by Seoul national university and Samsung heavy industry. A Database methodology for a scheduling data, an interfacing methodology for a simulation input and output, and a synchronized simulation related methodology are required for enhancing the value of the digital simulation for shipbuilding. In this paper, such a methodologies and a related case study for a fabrication factory and an assembly factory are presented.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

A Study on the Optimization Problem for Offshore Oil Production and Transportation (해양 석유 생산 및 수송 최적화 문제에 관한 연구)

  • Kim, Chang-Soo;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • The offshore oil production requires a huge amount of cost and time accompanied by multiple variables due to the peculiar nature of 'offshore'. And every process concerned is controlled by elaborate series of plans for reducing loss of lives, environment and property. This paper treats an optimization problem for offshore oil production and transportation. We present an offshore production and transportation network to define scope of the problem and construct a mixed integer linear programming model to tackle it. To demonstrate the validity of the optimization model presented, some computational experiments based on hypothetical offshore oil fields and demand markets are carried out by using MS Office Excel solver. The downstream of the offshore production and transportation network ends up with the maritime transportation problem distributing the crude oil produced from offshore fields to demand markets. We used MoDiSS(Model-based DSS in Ship Scheduling) which was built to resolve this maritime transportation problem. The paper concludes with the remark that the results of the study might be meaningfully applicable to the real world problems of offshore oil production and transportation.

Durability and Performance Requirements in Canadian Cement and Concrete Standards (캐나다 시멘트 및 콘크리트의 내구성 및 제성능에 대한 규준)

  • Hooton, R.D.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.5-21
    • /
    • 2006
  • Traditional standards and specifications for concrete have largely been prescriptive, (or prescription-based), and can sometimes hinder innovation and in particular the use of more environmentally friendly concretes by requiring minimum cement contents and SCM replacement levels. In December 2004, the Canadian CSA A23.1-04 standard was issued which made provisions (a) for high-volume SCM concretes, (b) added new performance requirements for concrete, and (c) clearly outlined the requirements and responsibilities for use in performance-based concrete specifications. Also, in December 2003, the CSA A3000 Hydraulic Cement standard was revised. It (a) reclassified the types of cements based on performance requirements, with both Portland and blended cements meeting the same physical requirements, (b) allows the use of performance testing for assessing sulphate resistance of cementitious materials combinations, (c) includes an Annex D, which allows performance testing of new or non-traditional supplementary cementing materials. From a review of international concrete standards, it was found that one of the main concerns with performance specifications has been the lack of tests, or lack of confidence in existing tests, for judging all relevant performance concerns. Of currently used or available test methods for both fresh, hardened physical, and durability properties, it was found that although there may be no ideal testing solutions, there are a number of practical and useful tests available. Some of these were adopted in CSA A23.1-04, and it is likely that new performance tests will be added in future revisions. Other concerns with performance standards are the different perspectives on the point of testing for performance. Some concrete suppliers may prefer processes for both pre-qualifying the plant, and specific mixtures, followed only with testing only 'end-of-chute' fresh properties on-site. However, owners want to know the in-place performance of the concrete, especially with high-volume SCM concretes where placing and curing are important. Also, the contractor must be aware of, and share the responsibility for handling, constructability, curing, and scheduling issues that influence the in-place concrete properties.

  • PDF