DOI QR코드

DOI QR Code

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor

토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명

  • Choi, Eun-Young (Department of Green Technology Convergence, KonKuk University) ;
  • Choi, Ki-Young (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, University of Seoul)
  • 최은영 (건국대학교 녹색기술융합학과) ;
  • 최기영 (서울시립대학교 환경원예학과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Received : 2013.07.21
  • Accepted : 2013.08.28
  • Published : 2013.09.30

Abstract

This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

본 연구는 토마토 수경재배에서 Frequency Domain Reflectometry(FDR) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 chip과 dust 비율을 구명하기 위한 기초 실험으로 chip 함량에 따른 일일 급액량, 배액량, 배지의 용적당 수분함량 및 전기전도도, 식물생육, 과실 수량과 수분이용효율 측정을 목적으로 수행되었다. 시판 코이어 슬라브 중 chip과 dust 부피비율이 0 : 100%, 30 : 70%, 50 : 50%, 70 : 30%인 것과 대조구로 시판 rockwool 배지와 2층 슬라브, 즉 1층에 chip함량과 2층에 dust함량이 15 : 85%, 25 : 75%, 35 : 65%인 것을 사용하여 실험하였다. 실험에 사용된 배지 중 0 : 100%와 rockwool 배지는 전 생육기간 동안 배액이 배출되지 않았고 나머지 모든 배지에서도 극소량의 배액이 배출되었다. 일일 평균 급액량은 시판 슬라브와 2층 슬라브 배지 모두에서 chip 함량에 따라 다르게 나타났다. 식물 생육, 상품과 수량 및 수분이용효율은 chip과 dust의 비율이 0 : 100%인 시판 슬라브에서 가장 높게 나타났다. 따라서, FDR센서에 의한 자동급액 방식으로 토마토 작물을 재배 할 때 chip과 dust 부피비율이 0 : 100%인 코이어 배지를 사용할 경우 식물이 더욱 효과적으로 수분을 이용하여 생산량이 증가되면서도 배액을 최소화하거나 배액을 창출하지 않아 환경오염을 감소시킬 수 있다. FDR 센서에 의해 자동 급액되는 시스템에서 1회 급액량과 급액간격 기능을 생육단계별로 조정하여 배지의 물리성에 따른 급액 일정에 대한 세밀한 실험이 앞으로 수행될 계획이다.

Keywords

References

  1. Abad, M., P. Noguera, R. Puchades, A. Maquieira and V. Noguera 2002. Physico-chemical and chemical properties of some coconut dusts for use as a peat substitute for containerised ornamental plants. Bioresource Tecnology 82: 241- 245. https://doi.org/10.1016/S0960-8524(01)00189-4
  2. Bilderback, T.E. 2002. Water management is key in reducing nutrient runoff from container nurseries. HortTechnology 12:541-544.
  3. Burnett, S.E. 2008. Morphology and irrigation efficiency of Gaura lindheimeri growth with capacitance sensor-controlled irrigation. HortScience 43: 1555-1560.
  4. Choi, E.Y., Y.B. Lee, and J.Y. Kim 2001. Nutrient uptake, growth and yield of cucumber cultivated with different growing substrates under a closed and an open system. Acta Horticulturae 548: 543-550.
  5. Choi, E.Y., K.Y. Choi, and Y.B. Lee. 2013a. Non-drainage irrigation scheduling in coir substrate hydroponic system for tomato cultivation by a frequency domain reflectometry sensor. European Journal of Horticultural Science 78: S. 132-143.
  6. Choi, E.Y., K.Y. Choi, and Y.B. Lee. 2013b. Development of a non-drainage hydroponic system with a coconut coir substrate by a Frequency Domain Refectometry for tomato cultivation. Journal of Plant Nutrition 36 (in Press).
  7. Evans, M.R., S. Konduru, and R.H. Stamps. 1996. Source variation in physical and chemical properties of coconut coir dust. HortScience 31: 965-967.
  8. Fares, A. and V. Polyakov. 2006. Advances in crop water management using capacitive water sensors. Advances in Agronomy 90 : 43-77. https://doi.org/10.1016/S0065-2113(06)90002-9
  9. Giuffrida, F., S. Argento, V. Lipari, and C. Leonardi. 2003. Methods for controlling salt accumulation in substrate cultivation. Acta Horticulturae 614: 799-803.
  10. Hilhorst, M.A. 2000. A pore water conductivity sensor. Soil Science Society of America Journal 64: 1922-1925. https://doi.org/10.2136/sssaj2000.6461922x
  11. Kang, J.Y., H.H. Lee, and K.H. Kim. 2004. Physical and chemical properties of organic horticultural substrates used in Korea. Acta Horticulturae 644: 231-235.
  12. Lee, J.H., Y.B. Lee, E.Y. Choi, and E.Y. Yang. 2007. A controlled irrigation method using integrated solar radiation has effect on both the production and quality of single-node cutting rose 'versillia' Acta Horticulturae 761: 379-385.
  13. Lin, C.P. 2003. Frequency domain versus travel time analyses of TDR waveforms for soil moisture measurements. Soil Science Society of America Journal 67: 720-729. https://doi.org/10.2136/sssaj2003.0720
  14. Lizarraga, A., H. Boesveld, F. Huibers, and C. Robles. 2003. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrigation and Drainage 52: 177-188. https://doi.org/10.1002/ird.86
  15. Noguera, P., M. Abad, V. Noguera, R. Puchades and A. Maquieira 2000. Coconut coir waste, a new and viable ecologically- friendly peat substitute. Acta Horticulturae 517: 279-286.
  16. Papadopoulos, A.P., U. Saha, X. Hao, and S. Khosla. 2008. Irrigation management in greenhouse tomato production in rockwool. Acta Horticulturae 799: 521-528.
  17. Prasad, M. 1997. Physical, chemical and biological properties of coir dust. Acta Horticulturae 450:21-30.
  18. Runia, W.T. and J.J. Amsing. 2001. Disinfection of recirculating water from closed cultivation systems by heat treatment. Acta Horticulturae 548:215-222.
  19. Thompson, R.B., M. Gallardo, L.C. Valdez, and M.D. Fernandez. 2007. Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agricultural Water Management 92:13-28. https://doi.org/10.1016/j.agwat.2007.04.009
  20. van Iersel, M.W., S. Dove, J.G. Kang, and S.E. Burnett. 2010. Growth and water use of petunia as affected by substrate water content and daily light integral. HortScience 45:277- 282.
  21. Warren, S.L. and T.E. Bilderback. 2004. Irrigation timing: Effect on plant growth, photosynthesis, water-use efficiency and substrate temperature. Acta Horticulturae 644:29-37.
  22. Yeager, T.R., C.H. Gilliam, T.E. Bilderback, D.C. Fare, A.X. Niemiera, and K.M. Tilt. 1997. Best management practice: guide for producing container-grown plants. Southern Nursery Assoc., Marietta, GA.