• Title/Summary/Keyword: Plant Maintenance

Search Result 921, Processing Time 0.027 seconds

Operational behaviour and reliability measures of a viscose staple fibre plant including deliberate failures

  • Sengar, Surabhi;Singh, S.B.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.1
    • /
    • pp.1-17
    • /
    • 2012
  • This Paper deals with the stochastic behavior and failure analysis of a Viscose Staple Fibre Plant which produces fibre for making clothes. The fibre making plant is a complex system with various subsystems as: Vendor (supplies Charcoal and Sulphur, raw materials for the process), Carbon di sulphide Plant, Acid Plant, Pulp Plant and Processing Plant. The considered system can completely fail due to failure of any of the subsystems. The Carbon di Sulphide Plant can fail in two different ways, due to lack of Sulphur or Charcoal. Processing Plant has the configuration 5-out-of-10: d and 6-out-of-10: f. It is also assumed that the system can fail due to workers strike and catastrophic failure. All failures follow exponential time distribution whereas all repairs follow general time distribution. Preventive Maintenance policy has been applied to reduce the failure in the system. Various reliability characteristics such as transition state probabilities, steady state behavior, reliability, availability, M.T.T.F and the cost analysis have been obtained using supplementary variable technique and Gumbel-Hougaard copula methodology.

  • PDF

A Study on the Development of Maintenance System for Equipment of LNG-FPSO Ship (LNG-FPSO 선박 장비들의 보전활동 지원시스템 개발에 관한 연구)

  • Lee, Soon-Sup;Kang, Donghoon;Lee, Jong-Hyun;Lee, Seung-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 2016
  • In this paper, a maintenance system is developed for LNG-FPSO topside and hullside equipment based CBM (Condition Based Maintenance) methodology. First, the development system defined the PWBS(Product Work Breakdown Structure) of major equipment of LNG-FPSO. Second, the development system developed the failure analysis, economic evaluation for optimal maintenance plan and database systems that save and manage information about equipment, failure mode, failure rate and failure cause. Finally, the verification of the development system was applied to the inlet system of topside and the pump tower system of hullside and the system was confirmed the effectiveness of CBMS(Condition Based Maintenance System).

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

Current methodologies in construction of plant-pollinator network with emphasize on the application of DNA metabarcoding approach

  • Namin, Saeed Mohamadzade;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.126-135
    • /
    • 2022
  • Background: Pollinators are important ecological elements due to their role in the maintenance of ecosystem health, wild plant reproduction, crop production and food security. The pollinator-plant interaction supports the preservation of plant and animal populations and it also improves the yield in pollination dependent crops. Having knowledge about the plant-pollinator interaction is necessary for development of pesticide risk assessment of pollinators and conservation of endangering species. Results: Traditional methods to discover the relatedness of insects and plants are based on tracing the visiting pollinators by field observations as well as palynology. These methods are time-consuming and needs expert taxonomists to identify different groups of pollinators such as insects or identify flowering plants through palynology. With pace of technology, using molecular methods become popular in identification and classification of organisms. DNA metabarcoding, which is the combination of DNA barcoding and high throughput sequencing, can be applied as an alternative method in identification of mixed origin environmental samples such as pollen loads attached to the body of insects and has been used in DNA-based discovery of plant-pollinator relationship. Conclusions: DNA metabarcoding is practical for plant-pollinator studies, however, lack of reference sequence in online databases, taxonomic resolution, universality of primers are the most crucial limitations. Using multiple molecular markers is preferable due to the limitations of developed universal primers, which improves taxa richness and taxonomic resolution of the studied community.

Gas Turbine Data Acquisition and Monitoring System for Combined Cycle Power Plant

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.405-410
    • /
    • 2008
  • This paper presents a data acquisition and monitoring system for a gas turbine. The proposed system entitled C-Tune DAS plays an important role to make an analysis of the real-time operation of the gas turbine under maintenance. The designed LabVIEW based software is divided into three parts according to their original functions, i.e., data acquisition, data analysis with display, and data storage. The data acquisition part receives data from a PMS (Plant Management System) server and two cFPs (Compact-Field Point). To verify the validity of the developed system, it is applied to gas turbines in the combined cycle power plant in Korea.

The improvement method for power plant boiler temperature nonuniformity of heat transfer tube bank flow path (발전용 보일러 전열 튜브 유로내 온도분포 불균일 개선기법)

  • Jung, Hoon;Kim, Bum-Shin;Jang, Suck-Won;Ahn, Yeon-Shik;Park, Gun-Bok;Whang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.837-841
    • /
    • 2001
  • Almost all power plant boiler has temperature distribution nonuniformity problem in heat transfer tube flow path. It can cause hot spot damage of superheated or reheated heat transfer section and reduce maintenance schedule when nonuniformity is severe. There are two solutions for improvement temperature nonuniformity. one is change of gas flow distribution of gas path and the other is contorl steam flow in tube bank. Of course, first method is very difficulty to apply but second method is'nt. In this paper, control steam flow is used to solve temperature nonuniformity of power plant boiler.

  • PDF

Development of an Internet based Virtual Reality Environment and Web Database for the Integrity Evaluation of the Nuclear Power Plant (원자력발전소 건전성평가를 위한 인터넷기반 가상현실환경과 웹데이터베이스의 개발)

  • 김종춘;정민중;최재붕;김영진;표창률
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.140-146
    • /
    • 2001
  • A nuclear Power Plant is composed of a number of mechanical components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to evaluate the integrity of these mechanical components, a lot of data are required including inspection data, geometrical data, material properties, etc. Therefore, an effective database system is essential to manage the integrity of nuclear power plant. For this purpose, an internet based virtual reality environment and web database system was proposed. The developed virtual reality environment provides realistic geometrical configurations of mechanical components using VRML (Virtual Reality Modeling Language). The virtual reality environment was linked with the web database, which can manage the required data for the integrity evaluation. The proposed system is able to share the information regarding the integrity evaluation through internet, and thus, will be suitable for an integrated system for the maintenance of mechanical components.

  • PDF

A Research and Analysis on the Actual Condition of Safety Management at Small-Medium Chemical Plant (중소기업 화학 사업장의 안전관리 실태 조사 분석)

  • 이태우
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.183-195
    • /
    • 1999
  • Most of chemical plant are using toxic and dangerous materials, inflammable and poisonous. There are many accidental dangers by escaping of fire, explosive and poisonous materials in case of high temperature and pressure. The accidents lead to taking employer's and local people's life and environmental contamination. Therefore, 27 small-medium chemical plant, which size is 30 ∼ 200 employees out of safety management agent ill the area of A was selected in this study. The problems of safety management and several countermeasures at the chemical plants was indicated through the analyzed data. Prior to this analysis, top managers' concerns, equipment maintenance for the safety management are needed. For the future, calamity prevention countermeasures by industrial disaster analysis are needed and active safety management programs are investigated for the industrial disaster prevention and productivity enhancement at the chemical plant.

  • PDF

Economic Analysis of Plant Utilities Under Environment Factor (환경요소를 고려한 발전설비의 경제성 평가)

  • 정석재;김경섭;박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2004
  • The purpose of this study is an economic analysis of power plant utilities by comparing electricity generating cost including environmental costs. Considering the enormous role of electricity in the national economy, it is very important to study the effect of environmental regulation on the electricity sector. Because power utilities need for large investment during construction, operation and maintenance, and also require much construction lead time. Economic analysis is the important process in the electric system expansion planning. This paper compares the costs of electricity generation including environmental costs between a coal-fired power plant and an LNG combined cycle power plants. With the simulation, this study surveys the sensitivity of fuel prices, interest rate and carbon tax. In each case, this sensitivity can help to decide which utility is economically better in environmental regulation circumstance.

  • PDF