• Title/Summary/Keyword: Plant Classification

Search Result 737, Processing Time 0.028 seconds

An Investigation of Local Naming Issue of Tamarix aphylla (에셀나무(Tamarix aphylla)의 명칭문제에 대한 고찰)

  • Kim, Young-Sook
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.56-67
    • /
    • 2019
  • In order to investigate the issue with the proper name of eshel(Tamarix aphylla) mentioned in the Bible, analysis of morphological taxonomy features of plants, studies on the symbolism of the Tamarix genus, analysis of examples in Korean classics and Chinese classics, and studies on the problems found in translations of Korean, Chinese and Japanese Bibles. The results are as follows. According to plant taxonomy, similar species of the Tamarix genus are differentiated by the leaf and flower, and because the size is very small about 2-4mm, it is difficult to differentiate by the naked eye. However, T. aphylla found in the plains of Israel and T. chinensis of China and Korea have distinctive differences in terms of the shape of the branch that droops and its blooming period. The Tamarix genus is a very precious tree that was planted in royal courtyards of ancient Mesopotamia and the Han(漢) Dynasty of China, and in ancient Egypt, it was said to be a tree that gave life to the dead. In the Bible, it was used as a sign of the covenant that God was with Abraham, and it also symbolized the prophet Samuel and the court of Samuel. When examining the example in Korean classics, the Tamarix genus was used as a common term in the Joseon Dynasty and it was often used as the medical term '$Ch{\bar{e}}ngli{\check{u}}$(檉柳)'. Meanwhile, the term 'wiseonglyu(渭城柳)' was used as a literary term. Upon researching the period and name of literature related to $Ch{\bar{e}}ngli{\check{u}}$(檉柳) among Chinese medicinal herb books, a total of 16 terms were used and among these terms, the term Chuísīliǔ(垂絲柳) used in the Chinese Bible cannot be found. There was no word called 'wiseonglyu(渭城柳)' that originated from the poem by Wang Wei(699-759) of Tang(唐) Dynasty and in fact, the word 'halyu(河柳)' that was related to Zhou(周) China. But when investigating the academic terms of China currently used, the words Chuísīliǔ(垂絲柳) and $Ch{\bar{e}}ngli{\check{u}}$(檉柳) are used equally, and therefore, it appears that the translation of eshel in the Chinese Bible as either Chuísīliǔ (垂絲柳) or $Ch{\bar{e}}ngli{\check{u}}$(檉柳) both appear to be of no issue. There were errors translating tamarix into 'やなぎ(willow)' in the Meiji Testaments(舊新約全書 1887), and translated correctly 'ぎょりゅう(檉柳)' since the Colloquial Japanese Bible(口語譯 聖書 1955). However, there are claims that 'gyoryu(ぎょりゅう 檉柳)' is not an indigenous species but an exotics species in the Edo Period, so it is necessary to reconsider the terminology. As apparent in the Korean classics examples analysis, there is high possibility that Korea's T. chinensis were grown in the Korean Peninsula for medicinal and gardening purposes. Therefore, the use of the medicinal term $Ch{\bar{e}}ngli{\check{u}}$(檉柳) or literary term 'wiseonglyu' in the Korean Bible may not be a big issue. However, the term 'wiseonglyu' is used very rarely even in China and as this may be connected to the admiration of China and Chinese things by literary persons of the Joseon Dynasty, so the use of this term should be reviewed carefully. Therefore, rather than using terms that may be of issue in the Bible, it is more feasible to transliterate the Hebrew word and call it eshel.

Review of the Korean Indigenous Species Investigation Project (2006-2020) by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea (한반도 자생생물 조사·발굴 연구사업 고찰(2006~2020))

  • Bae, Yeon Jae;Cho, Kijong;Min, Gi-Sik;Kim, Byung-Jik;Hyun, Jin-Oh;Lee, Jin Hwan;Lee, Hyang Burm;Yoon, Jung-Hoon;Hwang, Jeong Mi;Yum, Jin Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.119-135
    • /
    • 2021
  • Korea has stepped up efforts to investigate and catalog its flora and fauna to conserve the biodiversity of the Korean Peninsula and secure biological resources since the ratification of the Convention on Biological Diversity (CBD) in 1992 and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits (ABS) in 2010. Thus, after its establishment in 2007, the National Institute of Biological Resources (NIBR) of the Ministry of Environment of Korea initiated a project called the Korean Indigenous Species Investigation Project to investigate indigenous species on the Korean Peninsula. For 15 years since its beginning in 2006, this project has been carried out in five phases, Phase 1 from 2006-2008, Phase 2 from 2009-2011, Phase 3 from 2012-2014, Phase 4 from 2015-2017, and Phase 5 from 2018-2020. Before this project, in 2006, the number of indigenous species surveyed was 29,916. The figure was cumulatively aggregated at the end of each phase as 33,253 species for Phase 1 (2008), 38,011 species for Phase 2 (2011), 42,756 species for Phase 3 (2014), 49,027 species for Phase 4 (2017), and 54,428 species for Phase 5(2020). The number of indigenous species surveyed grew rapidly, showing an approximately 1.8-fold increase as the project progressed. These statistics showed an annual average of 2,320 newly recorded species during the project period. Among the recorded species, a total of 5,242 new species were reported in scientific publications, a great scientific achievement. During this project period, newly recorded species on the Korean Peninsula were identified using the recent taxonomic classifications as follows: 4,440 insect species (including 988 new species), 4,333 invertebrate species except for insects (including 1,492 new species), 98 vertebrate species (fish) (including nine new species), 309 plant species (including 176 vascular plant species, 133 bryophyte species, and 39 new species), 1,916 algae species (including 178 new species), 1,716 fungi and lichen species(including 309 new species), and 4,812 prokaryotic species (including 2,226 new species). The number of collected biological specimens in each phase was aggregated as follows: 247,226 for Phase 1 (2008), 207,827 for Phase 2 (2011), 287,133 for Phase 3 (2014), 244,920 for Phase 4(2017), and 144,333 for Phase 5(2020). A total of 1,131,439 specimens were obtained with an annual average of 75,429. More specifically, 281,054 insect specimens, 194,667 invertebrate specimens (except for insects), 40,100 fish specimens, 378,251 plant specimens, 140,490 algae specimens, 61,695 fungi specimens, and 35,182 prokaryotic specimens were collected. The cumulative number of researchers, which were nearly all professional taxonomists and graduate students majoring in taxonomy across the country, involved in this project was around 5,000, with an annual average of 395. The number of researchers/assistant researchers or mainly graduate students participating in Phase 1 was 597/268; 522/191 in Phase 2; 939/292 in Phase 3; 575/852 in Phase 4; and 601/1,097 in Phase 5. During this project period, 3,488 papers were published in major scientific journals. Of these, 2,320 papers were published in domestic journals and 1,168 papers were published in Science Citation Index(SCI) journals. During the project period, a total of 83.3 billion won (annual average of 5.5 billion won) or approximately US $75 million (annual average of US $5 million) was invested in investigating indigenous species and collecting specimens. This project was a large-scale research study led by the Korean government. It is considered to be a successful example of Korea's compressed development as it attracted almost all of the taxonomists in Korea and made remarkable achievements with a massive budget in a short time. The results from this project led to the National List of Species of Korea, where all species were organized by taxonomic classification. Information regarding the National List of Species of Korea is available to experts, students, and the general public (https://species.nibr.go.kr/index.do). The information, including descriptions, DNA sequences, habitats, distributions, ecological aspects, images, and multimedia, has been digitized, making contributions to scientific advancement in research fields such as phylogenetics and evolution. The species information also serves as a basis for projects aimed at species distribution and biological monitoring such as climate-sensitive biological indicator species. Moreover, the species information helps bio-industries search for useful biological resources. The most meaningful achievement of this project can be in providing support for nurturing young taxonomists like graduate students. This project has continued for the past 15 years and is still ongoing. Efforts to address issues, including species misidentification and invalid synonyms, still have to be made to enhance taxonomic research. Research needs to be conducted to investigate another 50,000 species out of the estimated 100,000 indigenous species on the Korean Peninsula.

Classification and Analysis of Vegetation for a Multiple-purpose Management of Forest -Centering around Dong Hwa Sa Area on Mt. Pal Gong- (삼림(森林)의 다목적(多目的) 경영(經營)을 위한 식생(植生)의 분류(分類)와 분석(分析) -팔공산(八公山) 동화사 지역(地域)을 중심(中心)으로-)

  • Kim, Byeong Ku;Cho, Hyun Je;Lee, Byeong Cheon;Hong, Sung Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.32-42
    • /
    • 1988
  • This research was to establish the fundamental materials for the preservation and multiple-purpose management of forest vegetation of Dong Hwa Sa area located in the south facing slope of Mt. Pal-Gong. Analysis of forest vegetation of this area was studied by the method of Gentaro Toyohara, based on ZM School method and Pfister. The results obtained were summarized as follows. (1). Forest vegetation in this area divided into mountain forest and valley forest. (2). Mountain forest divided into A. Pinus densiflora community, B. Carpirtus laxiflora community, C. Quercus mongolica community. (3). Valley forest was formed mostly of Zelkova serrata community. (4). Piraus densiflora community divided into 1. Pines densiflora typical group, 2. Pines densiflora-Alnus hirsuta group, 3. Pines densiflora-Ilex macropoda group. (5). Quercus mongolica community divided into 1. Pinus densiflora-Carpinus cordata group, 2. Prunus sargentii-Hydrangea serrata for. acuminata group, (6). Zelkova serrata community divided into 1. Acer mono group, 2. Vine plant group. A vegetation analysis based on concepts and methods developed by Robert, D. Pfister and Gentaro Toyohara was considered to be effective on providing a guiding principle for a multiple-purpose management of forestry and a three-dimensional utilization of forest, but it is not easy for us to utilize such a analysis method because we are not rich in the materials of analysis of vegetation to our forest. Thus, It is necessary that we should collect much materials to various parts of forest in order that may utilize this method of analysis of vegetation.

  • PDF

Analysis of the Environmental Index and Situation Naturalized Plants in the Stream of Downtown Jeonju (전주 도심 하천의 귀화식물 현황과 환경지수 분석)

  • Oh, Hyun-Kyung;Beon, Mu-Sup
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.248-257
    • /
    • 2006
  • Total naturalized plant species in the streams of Jeonju were listed as 109 taxa; 24 families, 75 genera, 106 species, 3 varieties. Dividing by stream, Jeonju stream has 75 taxa; 20 families, 55 genera, 73 species, 2 varieties. Samcheon stream has 86 taxa; 19 families, 64 genera, 84 species, 2 varieties. Soyang stream has 80 taxa; 21 families, 60 genera, 77 species, 3 varieties. Urbanization Index (UI) of total streams (109 taxa) was 40.2%. UI was 27.7% in Jeonju stream (75 taxa), 31.7% in Samcheon stream (86 taxa), 29.5% in Soyang stream (80 taxa). Dividing by degree of naturalization classification, 25 taxa (9.2%) were found in class 5, 17 taxa (6.2%) in class 4, 32 taxa (11.8%) in class 3, 27 taxa (9.9%) in class 2 and 8 taxa (2.9%) in class 1. Dividing by introduction period, 48 taxa (44%) aye in period I, 19 taxa (17%) in period II, 42 taxa (39%) in period III. Dividing by growth type, 48 taxa (44%) are annuals, 25 taxa (23%) are biennials, 33 taxa (30%) are perennials. Dividing by the place of origin, 39 taxa (35%) are from Euyope, 33 taxa (30%) from North America, 11 taxa (10%) from Tropic America, 9 taxa (8%) from Europe Asia,5 taxa (5%) from South America, 5 taxa (5%) from China.

Difference of Classification, Growth and Herbicidal Tolerance in Collected Weedy Rice(Oryza sativa) (수집(蒐集) 잡초성(雜草性)벼(Oryza sativa)의 분류(分類), 생장(生長) 및 제초제(除草劑) 내성차이(耐性差異))

  • Kuk, Y.I.;Guh, J.O.;Chon, S.U.
    • Korean Journal of Weed Science
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 1997
  • This study was carried out to investigate classfication of weedy rice (Oryza sativa) based on isozymes esterase and peroxidase, growth and developmental difference of weedy rices and rices grown under dry and water condition, and weedy rice control and tolerant difference of weedy rices in various herbicides using weedy rices collected from thirteen strains of Chonnam, one Chonbuk, two Kyeongki and two rice cultivars. 1. The collected weedy rices were classified into three groups based on isozyme esterase and peroxidase using polyacrylamide gel electrophoresis(PAGE) method. The classified groups were not same each other. 2. Plant height was taller in collected weedy rices than rice cultivars at 18 days after seeding under dry and water conditions, but number of leaves, shoot fresh weight, root fresh weight and root length were not significantly different between collected weedy rices and rice cultivars. In addition, growths of collected weedy rices were greater in dry- than water-condition. 3. After thiobencarb(S-4-chlorobenzyl diethythiocarbamate), molinate(S-ethyl hexahydro-1H-azepine-1-carbothioate) and oxadiazon(5-tert-butyl-3(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one) were applied at 6 days before seeding, the weedy rices controlled 100% by thiobencarb at 2.1kg ai/ha and 024kg ai/ha oxadiazon treatment but controlled 26% to 67% by molinate at 6.5kg ai/ha. Rice due to the herbicides was injured severely(25% to 100%) in flood condition at time of rice seeding after oxadiazon at 0.48kg ai/ha and 2.1kg ai/ha thiobencarb application, except for molinate which injured rice slightly(4% to 13%) in drain condition. The collected weedy rices to all experimented herbicides showed slight intraspecific variations. The intraspecific variations of weedy rices decreased in the order of thiobencarb>molinate>oxadiazon.

  • PDF

Analysis of Urban Heat Island Intensity Among Administrative Districts Using GIS and MODIS Imagery (GIS 및 MODIS 영상을 활용한 행정구역별 도시열섬강도 분석)

  • SEO, Kyeong-Ho;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.1-16
    • /
    • 2017
  • This study was conducted to analyze the urban heat island(UHI) intensity of South Korea by using Moderate Resolution Imaging Spectroradiometer(MODIS) satellite imagery. For this purpose, the metropolitan area was spatially divided according to land cover classification into urban and non-urban land. From the analysis of land surface temperature(LST) in South Korea in the summer of 2009 which was calculated from MODIS satellite imagery it was determined that the highest temperature recorded nationwide was $36.0^{\circ}C$, lowest $16.2^{\circ}C$, and that the mean was $24.3^{\circ}C$, with a standard deviation of $2.4^{\circ}C$. In order to analyze UHI by cities and counties, UHI intensity was defined as the difference in average temperature between urban and non-urban land, and was calculated through RST1 and RST2. The RST1 calculation showed scattered distribution in areas of high UHI intensity, whereas the RST2 calculation showed that areas of high UHI intensity were concentrated around major cities. In order to find an effective method for analyzing UHI by cities and counties, analysis was conducted of the correlation between the urbanization ratio, number of tropical heat nights, and number of heat-wave days. Although UHI intensity derived through RST1 showed barely any correlation, that derived through RST2 showed significant correlation. The RST2 method is deemed as a more suitable analytical method for measuring the UHI of urban land in cities and counties across the country. In cities and counties with an urbanization ratio of < 20%, the rate of increase for UHI intensity in proportion to increases in urbanization ratio, was very high; whereas this rate gradually declined when the urbanization ratio was > 20%. With an increase of $1^{\circ}C$ in RST2 UHI intensity, the number of tropical heat nights and heat wave days was predicted to increase by approximately five and 0.5, respectively. These results can be used for reference when predicting the effects of increased urbanization on UHI intensity.

A Meaningful Interpretation on Concept of Byeulseo Scenic Spot (별서명승의 개념에 대한 의미론적 해석)

  • Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.49-58
    • /
    • 2010
  • This study is attempted to establish the concept of Byeulseo Scenic Spot that the definitions of Byeulseo and Scenic Spot would be presented first followed by clarifying the basis, reason and justification that Byeulseo would be called as Byeulseo Scenic Spot that the following is the major results formulated herein. First, the concept of scenic spot under the Cultural Property Act is the reference to the famous site with the building improvement well known for its great scenery or the point where splendid scenery is viewed that has the artistic value along with the trace of human lives in this cultural heritage that, although the scenery is important but the attention has to be on discovery of historic resources with the story telling in the subject site. Second, the criteria of designation on the Scenic Spot in Korea would be natural scenery, animal and plant site with well-known scenery, view point of scenery, famous building or garden and important places with legend that there lacks diversification. In this aspect, the intent of the concept of Scenic Spot would be facilitated to expand the designation of the Byeulseo Scenic Spot as the Scenic Spot of living style. Third, from the foreign cases, particularly, in Japan, it is needed to note that Byeulseos and housing gardens are designated for 196 places of Scenic Spot, reaching 55.4% of entire Scenic Spots. Laws, regulations, systems and designated criteria on the cases of designating the foreign Scenic Spots would be studied and quoted. Fourth, the classification work for each type to designate as cultural heritage has to be continued as the Scenic Spot of subject site with even more emerged for the value as the Scenic Spot in garden, original site and the like classified as historic site, important folk data and the like. Fifth, the designation of Scenic Spot of Byeulseo garden with splendid scenery as the living Scenic Spot has to be expanded. The pavilion existed now nationwide would be approximately 1,500, and these pavilions are the place where the scholars stay in the famous site, and this is the central space of Byeulseo to study, and if there is clear one that has written and record of deed to create the stories to people with the value for publicity campaign, it would be the subject of Scenic Spot. And sixth, for the case of view point with splendid scenery in Byeulseo Garden, it cannot be the subject of designation that the designation of Scenic Spot has to be expanded. In the event of the Byeulseo garden in Korea, there are many cases of having outstanding view points, and there is a few case of designating the subject site with great view point as a Scenic Spot.

Molecular Identification of Zoysia japonica and Zoysia sinica (Zoysia Species) Based on ITS Sequence Analyses and CAPS (ITS 염기서열 분석 및 CAPS를 이용한 조이시아 속(Zoysia) 들잔디와 갯잔디의 구별)

  • Hong, Min-Ji;Yang, Dae-Hwa;Jeong, Ok-Cheol;Kim, Yang-Ji;Park, Mi-Young;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Park, Shin-Young;Yang, Paul;Song, Pill-Soon;Ko, Suk-Min;Lee, Hyo-Yeon
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.344-360
    • /
    • 2017
  • Zoysiagrasses are important turf plants used for school playgrounds, parks, golf courses, and sports fields. The two most popular zoysiagrass species are Zoysia japonica and Zoysia sinica. These are widely distributed across different growing zones and are morphologically distinguishable from each other; however, it is phenotypically difficult to differentiate those that grow along the coastal line from those in beach area habitats. A combination of morphological and molecular approaches is desirable to efficiently identify these two plant cultivars. In this study, we used a rapid identification system based on DNA barcoding of the nrDNA-internal transcribed spacer (ITS) regions. The nrDNA-ITS regions of ITS1, 5.8S nrDNA, and ITS2 from Z. japonica, Z. sinica, Agrostis stolonifera, and Poa pratensis were DNA barcoded to classify these grasses according to their molecular identities. The nrDNA-ITS sequences of these species were found at 686 bp, 687 bp, 683 bp, and 681 bp, respectively. The size of ITS1 ranged from 248 to 249 bp, while ITS2 ranged from 270 to 274 bp. The 5.8S coding region ranged from 163 - 164bp. Between Z. japonica and Z. sinica, nineteen (2.8%) nucleotide sites were variable, and the G+C content of the ITS region ranged from 55.4 to 63.3%. Substitutions and insert/deletion (indel) sites in the nrDNA-ITS sequence of Z. japonica and Z. sinica were converted to cleaved amplified polymorphic sequence (CAPS) markers, and applied to the Zoysia grasses sampled to verify the presence of these markers. Among the 62 control and collected grass samples, we classified three groups: 36 Z. japonica, 22 Z. sinica, and 4 Z. japonica/Z. sinica hybrids. Morphological classification revealed only two groups; Z. japonica and Z. sinica. Our results suggest that used of the nrDNA-ITS barcode region and CAPS markers can be used to distinguish between Z. japonica and Z. sinica at the species level.

Cis-acting Replication Element Variation of the Foot-and-mouth Disease Virus is Associated with the Determination of Host Susceptibility (구제역바이러스의 숙주 특이성 결정에 연관되어있는 구제역바이러스 cis-acting replication element 변이 분석 연구)

  • Kang, Hyo Rin;Seong, Mi So;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.947-955
    • /
    • 2020
  • The foot-and-mouth disease virus (FMDV), a member of the Aphthovirus genus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. During replication of the FMDV RNA (ribonucleic acid) genome, FMDV-encoding RNA polymerase 3D acts in a highly location-specific manner. This suggests that specific RNA structures recognized by 3D polymerase within non-coding regions of the FMDV genome assist with binding during replication. One such region is the cis-acting replication element (CRE), which functions as a template for RNA replication. The FMDV CRE adopts a stem-loop conformation with an extended duplex stem, supporting a novel 15-17 nucleotide loop that derives stability from base-stacking interactions, with the exact RNA nucleotide sequence of the CRE producing different RNA secondary structures. Here, we show that CRE sequences of FMDVs isolated in Korea from 2010 to 2017 exhibit A and O genotypes. Interestingly, variations in the RNA secondary structure of the Korean FMDVs are consistent with the phylogenetic relationships between these viruses and reveal the specificity of FMDV infections for particular host species. Therefore, we conclude that each genetic clade of Korean FMDV is characterized by a unique functional CRE and that the evolutionary success of new genetic lineages may be associated with the invention of a novel CRE motif. Therefore, we propose that the specific RNA structure of a CRE is an additional criterion for FMDV classification dependent on the host species. These findings will help correctly analyze CRE sequences and indicate the specificity of host species for future FMDV epidemics.

Vegetation Structure of Abies holophylla Forest near Woljeong Temple in Odaesan National Park (오대산국립공원 월정사 전나무숲 식생구조 분석)

  • Lee, Kyong-Jae;Kim, Ji-Seok;Choi, Jin-Woo;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2008
  • This research was aimed at looking into the vegetation structure of Abies holophylla forest distributed between Iljumun of Woljeong Temple and Keumgang bridge in Odaesan National Park. It was found that existed a total of 977 tree of Abies holophylla which are more than 20cm in DBH within the target site, and in 2006 when the survey was made, the number of fallen trees and poor growth trees was about 96, accounting for 9.8% of all. The age of Abies holophylla ranged from 41 years to 135 years($11\sim82cm$ in DBH). The number of Abies holophylla over 100cm in DBH was 8 and the largest Abies holophylla was 175cm in DBH and 31m in height. Its density was 5.9 individuals per $400m^2$. As a result of the analysis of the plant community structure using the TWINSP AN classification, Abies holophylla was divided into four community types. Firstly, Pinus densiflora-Abies holophylla community was predicted to vary into Abies holophylla community. In case of other three other communities, Abies holophylla communities were predicted to compete with deciduous broadleaf trees, such as Tilia amurensis and Acer pictum subsp. mono. Abies holophylla forest adjacent to Woljeong Temple of Odaesan National Park has a high value as sustainable resources for culture, landscape and tourism. Thus, it is necessary to clarify the reason for the incidence of poor growth trees and fallen trees among all trees of Abies holophylla and take counter-measures against it for the preservation and management of Abies holophylla forest. In addition, a more aggressive managrment like getting rid of the deciduous broadleaf trees, such as Tilia amurensis and Acer pictum subsp. mono, which appear mostly on understory layer or shrub layer within Abies holophylla, and continuous management is also needed for the young trees of Abies holophylla which are feared to be pressurized outside from their neighboring trees because their initial growth after germination is very slow.