• Title/Summary/Keyword: Plane wave approximation

Search Result 79, Processing Time 0.028 seconds

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L.;Chuan, M.W.;Chong, W.K.;Alias, N.E.;Hamzah, A.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.209-221
    • /
    • 2019
  • Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.

A First-principles Study on the Effects on Magnetism of Si Impurity in BCC Fe by Considering Spin-orbit Coupling (스핀-궤도 상호작용을 고려한 Si 불순물이 BCC Fe의 자성에 미치는 영향에 대한 제일원리연구)

  • Rahman, Gul;Kim, In-Gee;Chang, Sam-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.211-216
    • /
    • 2008
  • The effects of Si impurity on electronic structures and magnetism of bcc Fe are investigated by using a first-principles method by considering spin-orbit coupling. In order to describe the Si impurity, a 27 atomic bcc Fe supercell has been considered. The Kohn-Sham equation was solved in terms of the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The effects of spin-orbit coupling were calculated self-consistently by considering spin-diagonal terms based on second variation method. For the ferromagnetic (FM) state without considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.143{\mu}B$, while the magnetic moments of Fe atoms were calculated to be $2.214{\mu}B$, $2.327{\mu}B$, and $2.354{\mu}B$ in away from the Si atom, respectively. However, the FM state with considering SOC, the spin magnetic moment of the Si impurity was calculated to be $-0.144{\mu}B$, which is not affected significantly by SOC, but the spin magnetic moments of Fe atoms were calculated $2.189{\mu}B$, $2.310{\mu}B$, and $2.325{\mu}B$, respectively, which are much reduced value compared to those of the FM state without SOC. Comparing the total charge density and spin density, those features are thought to be originated by the screening distortions of the Fe $t_{2g}$ orbital, which can be obtained by considering SOC.

Magnetism of Pd(111) Thin Films: A First-principles Calculation (Pd(111) 박막의 자성: 제일원리계산)

  • Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Pd has the highest magnetic susceptibility among single element metals and often shows ferromagnetism under some special environments. In this paper, we report magnetism of 5- and 9-monolayers (ML) calculated by using full-potential linearized augmented plane wave method. Exchange-correlation interaction is taken into account in local density approximation (LDA) and generalized gradient approximation (GGA) and calculational results in LDA and GGA are compared with each other. It is found that calculations by LDA are more reliable compared to those by GGA because LDA prediction of paramagnetism of bulk Pd is consistent with experiments, whereas GGA predicts wrongly ferromagnetim of bulk Pd. Calculational results in LDA on a 5-ML Pd(111) thin film shows a ferromagnetic ground state unlike a paramagnetic ground state of bulk Pd. The center Pd layer of the 5-ML Pd(111) thin film has the largest magnetic moment ($0.273{\mu}_B$) among the layers and |m| = 1 orbital states play a dominant role in stabilizing the ferromagnetism of the 5-ML Pd(111) thin film. A 9-ML Pd(111) thin film in a ferromagnetic state has almost the same total energy as in a paramagnetic state. Since the magnetization of the 9-ML Pd(111) thin film is stable, the ferromagnetic state may be meta-stable.

Broadband Processing of Conventional Marine Seismic Data Through Source and Receiver Deghosting in Frequency-Ray Parameter Domain (주파수-파선변수 영역에서 음원 및 수신기 고스트 제거를 통한 전통적인 해양 탄성파 자료의 광대역 자료처리)

  • Kim, Su-min;Koo, Nam-Hyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.220-227
    • /
    • 2016
  • Marine seismic data have not only primary signals from subsurface but also ghost signals reflected from the sea surface. The ghost decreases temporal resolution of seismic data because it attenuates specific frequency components. For eliminating the ghost signals effectively, the exact ghost delaytimes and reflection coefficients are required. Because of undulation of the sea surface and vertical movements of airguns and streamers, the ghost delaytime varies spatially and randomly while acquiring seismic data. The reflection coefficient is a function of frequency, incidence angle of plane-wave and the sea state. In order to estimate the proper ghost delaytimes considering these characteristics, we compared the ghost delaytimes estimated with L-1 norm, L-2 norm and kurtosis of the deghosted trace and its autocorrelation on synthetic data. L-1 norm of autocorrelation showed a minimal error and the reflection coefficient was calculated using Kirchhoff approximation equation which can handle the effect of wave height. We applied the estimated ghost delaytimes and the calculated reflection coefficients to remove the source and receiver ghost effects. By removing ghost signals, we reconstructed the frequency components attenuated near the notch frequency and produced the migrated stack section with enhanced temporal resolution.

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

The Electronic Structure and Magnetism of bcc Rh(001) Surface (체심 입방구조 Rh(001) 표면의 전자구조와 자성)

  • Cho, L.H.;Bialek, B.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.206-210
    • /
    • 2008
  • According to the recent reports the bulk bcc Rh is ferromagnetic with a small difference of energy compared to paramagnetic state. In this study, the electronic structure and magnetism for bcc Rh(001) surface are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the surface ferromagnetic state is preferable over the paramagnetic one. For unrelaxed system, the magnetic moment of the surface layer, $0.48{\mu}B$, is slightly increased comparing with the bulk value, $0.41{\mu}B$ while the value of the subsurface layer, $0.23{\mu}B$, is much smaller than the bulk value. The total energy and atomic force calculations show that the surface layer is relaxed downward and the subsurface layer moves upward to reduce the layer distance between the surface and subsurface layers by 7.0 %. The relaxation effect leads to weakening the surface magnetic properties. Specifically, the value of the magnetic moment of the surface atom is decreased to $0.36{\mu}B$. Since the spin polarization of the subsurface layer is only $0.14{\mu}B$, it is concluded that the bcc Rh(001) surface is rather weakly ferromagnetic.

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study (Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).