Browse > Article
http://dx.doi.org/10.4283/JKMS.2008.18.4.131

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study  

Jin, Y.J. (Department of Physics, Inha University)
Lee, J.I. (Department of Physics, Inha University)
Abstract
The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).
Keywords
half-metallicity$Co_2TiSn$; Heusler compound; electronic structures;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys., 39, 765 (2006)   DOI   ScienceOn
2 G. A. de Wijs and R. A. de Groot, Phys. Rev. B, 64, 020402 (2001)   DOI   ScienceOn
3 Y. J. Jin and J. I. Lee, J. Korean Phys. Soc., 51, 155 (2007)   DOI   ScienceOn
4 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001)   DOI   ScienceOn
5 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 76, 323 (2004)   DOI   ScienceOn
6 R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, 2024 (1983)   DOI
7 G. Prinz and K. Hathaway, Physics Today, 48, 24 (1995)
8 H. C. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, J. Phys. D: Appl. Phys., 40, 1587 (2007)   DOI   ScienceOn
9 R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science, 282, 85 (1998)   DOI   ScienceOn
10 Y. Byun and J. I. Lee, J. of Kor. Mag. Soc., 15(5), 257 (2005)   과학기술학회마을   DOI   ScienceOn
11 W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965)   DOI
12 M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982)   DOI
13 Y. J. Jin and J. I. Lee, Phys. Stat. Sol. (a) accepted (2008)
14 D. Orgassa, H. Fujiwara, T. C. Schulthess, and W. H. Butler, Phys. Rev. B, 60, 13237 (1999)   DOI
15 P. J. Webster and K. R. Ziebeck, J. Phys. Chem. Solids, 34, 1647 (1973)   DOI   ScienceOn
16 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981)   DOI
17 D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1977)   DOI   ScienceOn
18 S. J. Hashemifar, P. Kratzer, and M. Scheffler, Phys. Rev. Lett., 94, 096402 (2005)   DOI   ScienceOn
19 S. C. Lee, T. D. Lee, P. Blaha, and K. Schwarz, J. Appl. Phys., 97, 10C307 (2005)
20 P. G. van Engen, K. H. J. Buschow, and M. Erman, J. Magn. Magn. Mater., 30, 374 (1983)   DOI   ScienceOn
21 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78, 1396(E) (1997)
22 I. Galanakis, K. Ozdogan, E. Sasioglu, and B. Aktas, Phys. Rev. B, 75, 092407 (2007)   DOI   ScienceOn
23 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996)   DOI   ScienceOn
24 H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D: Appl. Phys., 40, 1507 (2007)   DOI   ScienceOn