• 제목/요약/키워드: Plane stress field

검색결과 181건 처리시간 0.021초

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

효과적인 열응력 해석을 위한 사각형 추가 변형률 요소의 개발 (Development of a Quadrilateral Enhanced Assumed Strain Element for Efficient and Accurate Thermal Stress Analysis)

  • 고진환;이병채
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1205-1214
    • /
    • 1999
  • A new quadrilateral plane stress element is developed for efficient and accurate analysis of thermal stress problems. It is convenient to use the same mesh and the same shape functions for thermal analysis and stress analysis. But, because of the inconsistency between deformation related strain field and thermal strain field, oscillatory responses and considerable errors in stresses are resulted in. To avoid undesired oscillations, strain approximation is enhanced by supplementing several assumed strain terms based on the variational principle. Thermal deformation is incorporated into the generalized mixed variational principle for displacement, strain and stress fields, and basic equations for the modified enhanced assumed strain method are derived. For the stress approximation of bilinear elements, the $5{\beta}$ version of Pian and Sumihara is adopted. The numerical results for several problems show that the present element behaves well and reduces oscillatory responses. it also results in almost the same magnitude of error as compared with the quadratic element.

가중함수이론을 이용한 선형이방성재료에서의 Mode III 균열해석 (Weight Function Theory for a Mode III Crack In a Rectilinear Anisotropic Material)

  • 안득만;권순홍
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.146-151
    • /
    • 2009
  • In this paper, a weight function theory for the calculation of the mode III stress intensity factor in a rectilinear anisotropic body is formulated. This formulation employs Lekhnitskii's formalism for two dimensional anisotropic materials. To illustrate the method used for the weight function theory, we calculated the mode III stress intensity factor in a single edge-notched configuration.

NUMERICAL ANALYSIS OF A LAMINATED COMPOSITE ELASTIC FIELD WITH ROLLER GUIDED PANEL

  • Go, Jae-Gwi;Ali, Mohamed Afsar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권2호
    • /
    • pp.67-78
    • /
    • 2010
  • An elastic field composed of symmetric cross-ply laminated material is analyzed in roller guided panel. The plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. The numerical solution for two displacement parameters is obtained using a finite element method considering a panel of glass/epoxy laminated composite. Some components of stress and displacement at different sections of panel are displayed. The results makes sure that the formulation developed in this study can be applied to analyze the characteristics of elastic field made of laminated composite under any boundary conditions.

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.

완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분 (Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding)

  • 이형일;김용범
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론 (Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load)

  • 오진호;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M.;Moradi, F.
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.311-324
    • /
    • 2019
  • The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.

1996년 12월 13일 영월지진의 진원단층면 방향 (Fault plane solutions of the December 13, 1996 Yeongweol earthquake)

  • 박창업;신진수;지헌철;강익범;류용규
    • 지구물리
    • /
    • 제1권1호
    • /
    • pp.23-30
    • /
    • 1998
  • 격자 테스트 방법을 이용하여 1996년 12월 13일에 일어난 규모 4.5의 영월 지진의 진원단층 방향을 추정하였다. 국내의 기상청, 한국자원연구소, 원주 KSRS 관측망과 일본내 관측망에서 기록된 30개의 P파 극성 자료를 이용하였다. 격자 테스트 방법으로부터 계산된 진원단층면의 방향은 스러스트가 포함된 주향 이동 단층임을 보여준다. 즉 진원단층의 방향은 180±20°주향, 50±5°경사, 150±5°면선각(rake), 또는 292±3°주향, 65±5°경사, 30±10°면선각이 된다. 이들 단층 방향은 1980년 1월 7일 삭주, 1981년 4월 15일 포항, 및 1976년 10월 6일 군산 앞바다에서 일어난 지진과 유사하다. 응력의 주 압축 방향은 동북동-서남서의 경향을 가지며, 이는 이전 연구에서 구해진 한반도 및 주변부의 광역의 지구조적 응력 방향과 유사하다.

  • PDF