• Title/Summary/Keyword: Plane Material

Search Result 1,379, Processing Time 0.025 seconds

Strength and behaviour of bamboo reinforced concrete wall panels under two way in-plane action

  • Ganesan, N.;Indira, P.V.;Himasree, P.R.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • An experimental investigation has been carried out on the use of an environmentally sustainable material, bamboo, in the construction of precast concrete structural wall panels. The strength and behaviour of three prototype bamboo reinforced concrete wall panel specimens under two-way in-plane action was studied. The specimens with varying aspect ratio and thinness ratio were tested to fail under a uniformly distributed in-plane load applied at an eccentricity of t/6. The aspect ratio of the specimens considered includes 1.667, 1.818 and 2 and the thinness ratio includes 12.5, 13.75 and 15. The influence of aspect ratio and thinness ratio of bamboo reinforced concrete wall panels, on its strength and behaviour was discussed. Varnished and sand blasted bamboo splints of 20 mm width and thickness varying from 8 to 15 mm were used as reinforcement in concrete. Based on the study, an empirical equation was developed considering the geometrical parameters of bamboo reinforced concrete wall panels for predicting its ultimate strength under two way in-plane action.

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

Retardation Free In-plane Switching Liquid Crystal Display with High Speed and Wide-view Angle

  • Kang, Wan-Seok;Moon, Je-Wook;Lee, Gi-Dong;Lee, Seung-Hee;Lee, Joun-Ho;Kim, Byeong-Koo;Choi, Hyun-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • In this paper, we propose an in-plane switching (IPS) mode for liquid crystal displays (LCDs) that, in principle, is free of retardation of the LC cell. Basically, the optical configuration of the LC cell consists of an A-plate and an LC layer for switching between the dark and bright states. We could achieve a fast response time compared with the conventional in-plane LC cell because the free retardation condition of the proposed LC cell enables us to reduce the cell gap even by quarter-wave retardation without any change of the optimized LC material in the transmissive mode. Experiments for verification of the proposed in-plane switching LC cells have shown a significant reduction of the rising time and falling time simultaneously due to the small cell gap. Furthermore, we also proposed an optical configuration for wide viewing property of the retardation free IPS LCD by applying the optical films. We proved the wide-view property of the retardation free IPS LCD by comparing its optical luminance with the calculated optical property of the conventional IPS LCD.

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

In-plane buckling strength of fixed arch ribs subjected vertical distributed loading (수직 등분포 하중을 받는 고정 지점 포물선 아치 리브의 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.439-447
    • /
    • 2005
  • When arch ribs are subjected to vertical loading, they may buckle suddenly towards the in-plane direction. Therefore, the designer should consider their in-plane stability. In this paper, the in-plane elastic and inelastic buckling strength of parabolic, fixed arch ribs subjected to vertical distributed loading were investigated using the finite element method. A finite element model for the snap-through and inelastic behavior of arch ribs was verified using other researchers' test results. The ultimate strength of arch ribs was determined by taking into account their large deformation, material inelasticity, and residual stress. Finally, the finite element analysis results were compared with the EC3 design code.

A Computational Study on Creep-Fatigue behavior of Weld Interface Crack (용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구)

  • 이진상;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO (TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구)

  • Choi, M.K.;Ahn, C.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

Numerical Analysis Method of Overlay Model for Material Nonlinearity Considering Strain Hardening (변형률 경화를 고려한 오버레이 모델의 재료비선형 수치해석기법)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.291-301
    • /
    • 2007
  • The overlay model is a certain kinds of numerical analysis method to present the material non-lineariy which is represented the baushinger effect and the strain hardening. This model simulates the complex behavior of material by controlling the properties of the layers which like the hardening ratio, the section area and the yield stress. In this paper, the constitutive equation and plastic flow rule of each layer which are laid in the plane stress field are obtained by using the thermodynamics. Two numerical examples were tested for the validity of proposed method in uniaxial stress and plane stress field with comparable experimental results. The only parameter for the test is the yield stress distribution of each layers.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Identification of Defect Type by Analysis of a Single PD Pulse in Gas Insulated Structure (가스절연 구조에서 단일 부분방전펄스 분석에 의한 결함 판별)

  • Jo, Hyang-Eun;Kim, Sun-Jae;Jeong, Gi-Woo;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.320-325
    • /
    • 2015
  • This paper dealt with a defect identification algorithm which is based on single partial discharge (PD) pulse analysis in gas insulated structure. Four types of electrode systems such as a needle-plane, a plane-needle, a free particle and a crack inside spacer were fabricated to simulate defects in gas insulated switchgear (GIS). We measured single PD pulse by an oscilloscope with a sampling rate of 5 GS/s and a frequency bandwidth of 1 GHz. Data aquisition and signal processing were controlled by a LabVIEW program. Physical shapes of PD pulses were compared with kurtosis, skewness and time-based parameters as rising time, falling time and pulse-width. These parameters were analysed by an algorithm with a back propagation algorithm (BPA). By applying the algorithm, the identification rate was 97% for the needle-plane electrode, 96% for the plane-needle electrode, 91% for the free particle and 93% for the crack inside spacer. The results verified that the algorithm could identify the type of defects in GIS.