• Title/Summary/Keyword: Plane Detection

Search Result 310, Processing Time 0.02 seconds

A Study on the Acoustic Detection of Partial Discharges in Insulation Oil (유중 부분방전의 음향검출에 관한 연구)

  • Kil, Gyung-Suk;Kim, Sung-Wook;Park, Dae-Won;Kim, Sun-Jae;Song, Jae-Man
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper dealt with the acoustic detection of partial discharge (PD) in insulation oil for insulation diagnostics of oil immersed transformers. Electrode systems such as needle to plane, plane to plane, and floating were fabricated to simulate some defects in transformers. A wide band acoustic emission(AE) sensor with the frequency ranges of 100 kHz~1 MHz and a narrow band AE sensor with the resonant frequency of 140 kHz were used in the experiment. Also, a decoupler and an amplifier were designed to detect and amplify the acoustic signal only. The decoupler separates acoustic signal from DC source without any distortion, and the amplifier has the gain of 40 dB in frequency ranges of 11 kHz~4 MHz. In the experiment, frequency components and propagation characteristics of acoustic signal were analyzed, and an algorithm of positioning of PD occurrence by the time difference of arrival was proposed. From the results, the frequency components of the acoustic signal exist from 50 kHz to 200 kHz and the positioning error of PD calculated by three AE sensors was within 1%.

Damage Detection at Welded Joint of Two-Dimensional Plane Model

  • Chung, Chang-Yong;Eun, Hee-Chang;Seo, Eun-Kyoung
    • Architectural research
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • Damage detection algorithms based on a one-dimensional beam model can detect damage within a beam span caused by flexure only but cannot detect damage at a joint with prescribed boundary conditions or at the middle part of a beam section where the neutral axis is located. Considering the damage at a welded joint of beam elements in steel structures and modeling the damage with twodimensional plane elements, this study presents a new approach to detecting damage in the depth direction of the joint and beam section. Three damage scenarios at the upper, middle, and lower parts of a welded joint of a rectangular symmetric section are investigated. The damage is detected by evaluating the difference in the receptance magnitude between the undamaged and damaged states. This study also investigates the effect of measurement locations and noise on the capability of the method in detecting damage. The numerical results show the validity of the proposed method in detecting damage at the beam's welded joint.

Analysis of the Difference in Pilot Error by Using the Signal Detection Theory (신호탐지론을 활용한 조종사 Error 차이 분석)

  • Kwon, Oh-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • This study was to analyze the difference in pilot error by using the Signal Detection Theory. The task was to detect the targeted aircraft(signal) which is different shape from many other aircraft(noise). From the two experiments, we differentiated the task difficulty followed by change in noise stimuli. Experiment 1 was to search the signal stimuli(fighter plane) while the noise stimuli(cargo plane) were increasing. The results from the Experiment 1 showed the tendency to decrease the hit rate by increasing the number of noise stimuli. However, the false alarm rate was not increased. The sensitivity(d') showed quite high. In Experiment 2, a disturbance stimulus(helicopter) was added to noise stimuli. The result was generally similar to those of Experiment 1. However, the hit rate was lower than that of Experiment 1.

Computational Integral Imaging with Enhanced Depth Sensitivity

  • Baasantseren, Ganbat;Park, Jae-Hyeung;Kim, Nam;Kwon, Ki-Chul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • A novel computational integral imaging technique with enhanced depth sensitivity is proposed. For each lateral position at a given depth plane, the dissimilarity between corresponding pixels of the elemental images is measured and used as a suppressing factor for that position. The intensity values are aggregated to determine the correct depth plane of each plane object. The experimental and simulation results show that the reconstructed depth image on the incorrect depth plane is effectively suppressed, and that the depth image on the correct depth plane is reconstructed clearly without any noise. The correct depth plane is also exactly determined.

OPTMAL LICATION OF ACOUSTIC SENSORS AND OPTIMAL OBSERVATION POLICY FOR DETECTING ANIMALIUS PLANE OBJECY IN SHIELD CINSTRUCTION METHOD

  • Yamane, Kenji;Tanaka, Shogo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.240-243
    • /
    • 1995
  • In excavating tunnels, shield tunneling machines having many cutters on their cutter planes are used. Not many observation data being available in the detection system, optimal observation policy is very important. From this viewpoint, we previously considered the optimal location of acoustic sensors on the cutter plane and also the optimal observation policy for the case where three receiving transducers were used, and showed that the optimal sensor location was given as arbitrary equally-spaced points on the cutter plane circle, and that the optimal rotating angles were also found to be arbitrary. In application, however, it is often difficult to locate sensors at arbitrary positions or to use three sensors from the viewpoints of machine structure and cost. This paper considers the optimal observation policy for detecting anomlous plane objects for the case where two receiving transducers are used and the case where three receiving transducers are located only on a diameter of the cutter plane.

  • PDF

Obstacle Detection for Generating the Motion of Humanoid Robot (휴머노이드 로봇의 움직임 생성을 위한 장애물 인식방법)

  • Park, Chan-Soo;Kim, Doik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1115-1121
    • /
    • 2012
  • This paper proposes a method to extract accurate plane of an object in unstructured environment for a humanoid robot by using a laser scanner. By panning and tilting 2D laser scanner installed on the head of a humanoid robot, 3D depth map of unstructured environment is generated. After generating the 3D depth map around a robot, the proposed plane extraction method is applied to the 3D depth map. By using the hierarchical clustering method, points on the same plane are extracted from the point cloud in the 3D depth map. After segmenting the plane from the point cloud, dimensions of the planes are calculated. The accuracy of the extracted plane is evaluated with experimental results, which show the effectiveness of the proposed method to extract planes around a humanoid robot in unstructured environment.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

Cutting Plane Algorithm for the Selection of Non-Isolated Pixel Modulation Code (고립 픽셀 제거 변조부호 선택을 위한 절단평면 알고리즘)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.465-470
    • /
    • 2013
  • In this paper, we introduce a modulation code design problem where best selection of two-dimensional codewords are determined to reduce two-dimensional (2D) Intersymbol Interference (ISI) and Interpage Interference (IPI), while when these codewords are randomly arranged on the storage, isolated pixel cannot be formed. Codeword selection problem and isolated pixel detection problem are formulated as integer program models and we develop a cutting plane algorithm where a valid cut is generated to remove current feasible solution to avoid isolated pixel by solving the isolated pixel detection subproblem. Using the proposed method, $4{\times}2$ 6/8 codewords with non-isolated pixel are found.

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

Automatic Sagittal Plane Detection for the Identification of the Mandibular Canal (치아 신경관 식별을 위한 자동 시상면 검출법)

  • Pak, Hyunji;Kim, Dongjoon;Shin, Yeong-Gil
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.31-37
    • /
    • 2020
  • Identification of the mandibular canal path in Computed Tomography (CT) scans is important in dental implantology. Typically, prior to the implant planning, dentists find a sagittal plane where the mandibular canal path is maximally observed, to manually identify the mandibular canal. However, this is time-consuming and requires extensive experience. In this paper, we propose a deep-learning-based framework to detect the desired sagittal plane automatically. This is accomplished by utilizing two main techniques: 1) a modified version of the iterative transformation network (ITN) method for obtaining initial planes, and 2) a fine searching method based on a convolutional neural network (CNN) classifier for detecting the desirable sagittal plane. This combination of techniques facilitates accurate plane detection, which is a limitation of the stand-alone ITN method. We have tested on a number of CT datasets to demonstrate that the proposed method can achieve more satisfactory results compared to the ITN method. This allows dentists to identify the mandibular canal path efficiently, providing a foundation for future research into more efficient, automatic mandibular canal detection methods.