
Damage Detection at Welded Joint 
of Two-Dimensional Plane Model

Chang-Yong Chung, Hee-Chang Eun and Eun-Kyoung Seo
Professor, Department of Architecture, Hallym college, Chuncheon 
Professor, Department of Architectural Eng., Kangwon National Univ., Chuncheon
Graduate Student, Department of Architectural Eng., Kangwon National Univ., Chuncheon, Korea

Abstract  Damage detection algorithms based on a one-dimensional beam model can detect damage within a beam span caused by 
flexure only but cannot detect damage at a joint with prescribed boundary conditions or at the middle part of a beam section where the 
neutral axis is located. Considering the damage at a welded joint of beam elements in steel structures and modeling the damage with two-
dimensional plane elements, this study presents a new approach to detecting damage in the depth direction of the joint and beam section. 
Three damage scenarios at the upper, middle, and lower parts of a welded joint of a rectangular symmetric section are investigated. The 
damage is detected by evaluating the difference in the receptance magnitude between the undamaged and damaged states. This study also 
investigates the effect of measurement locations and noise on the capability of the method in detecting damage. The numerical results show 
the validity of the proposed method in detecting damage at the beam’s welded joint.  
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1. INTRODUCTION

Structural health monitoring has been receiving a growing 
amount of interest from researchers in diverse fields of engineering. 
Many non-destructive methods for improved serviceability and 
damage detection of structures have been developed with the 
advent of various kinds of measuring systems. 

Structural damage detection techniques involve the process of 
detecting, locating, and quantifying damage that has occurred in a 
structure by using the observed changes in the structure response. 
During the past several decades, a significant amount of research 
has been conducted in the area of structural damage detection 
(Doebling, 1998; Pandey, 1991; Sovoz, 2008; Yoon, 2010; Shih, 
2009; Rucevskis, 2009;Adewuyi, 2009; Alampalli, 1997; Cruz, 
2008).

Damage detection algorithms of a flexural member using a 
one-dimensional beam element have been well established using 
flexural curvature and strain characteristics. The change in the 
modal strain energy before and after the occurrence of damage 
has been considered as an indicator for detecting and locating the 
damage.  Where a particular vibration mode stores a large amount 
of strain energy in a particular structural load path, the frequency 
and shape of that mode are highly sensitive to the changes in that 
load path caused by the damage.

Kim and Stubbs (1995) applied a damage identification algorithm 
to locate and size a single crack based on the ratio of modal strain 
energy of elements before and after the damage. The curvature 
required for this calculation is commonly extracted from the 
measured displacement mode shapes using a central difference 
approximation. Adewuyi et al. (2009) showed that the distributed 
strain measurements are a more efficient choice than traditional 
measurement techniques. 

Cornwell and Farrar (1999) presented an analytical method 
based on the changes in the strain energy of the structure.  They 
provided a generalized method that extended from the one-
dimensional curvature method of beam-like structures to the two-
dimensional method of plate-like structures.  Kim et al. (2003) 
presented a damage index algorithm to localize and estimate the 
severity of damage from monitoring changes in modal strain 
energy.  Shi et al. (1998) provided a method to detect the location 
and to estimate the magnitude of the damage in a structure.  This 
method was carried out in three stages: expansion of measured 
mode shapes, localization of the damage domain using energy 
quotient difference, and damage quantification based on sensitivity 
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of the modal frequency.  Peterson et al. (2001) worked on the 
damage localization algorithm and used the changes in the modal 
strain energy between the mode shapes of a calibrated model and 
the experimentally obtained mode shapes for a timber beam.  Shi et 
al. (2000) proposed a structural damage detection method based on 
the change of the modal strain energy before and after the damage 
and its sensitivity as a function of the analytical mode shape changes 
and the stiffness matrix.  Rahmatalla and Eun (2010) presented a 
damage detection method based on the distribution of constraint 
forces in the satisfaction of the displacements expanded from 
measured strain data.  While the research in the area of structural 
damage detection is intensive, there have been few research papers 
evaluating the performance of the end support of structures with 
boundary conditions that include damage. 

Traditionally, damage detection methods based on flexural 
performance are utilized in detecting damage within a beam 
structure itself under the assumption of prescribed end conditions. 
The structural joint has a weak performance, due to stress 
concentration and discontinuity of load flow, and therefore is prone 
to deterioration by the external effects rather than by a member 
itself.  Numerical experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at the joint 
or end supports, and the central difference approximation of the 
flexural performance yields abruptly changed curvature at the end 
support.  It is obvious that the damage at the joint is not detectable 
with the traditional approaches, and thus it is necessary to explicitly 
establish the boundary condition when detecting the performance 
at the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 

xyγ are calculated by

x
ux

x ∂
∂

=ε ,
y

u y
y ∂

∂
=ε ,

x
u

y
u yx

xy ∂

∂
+

∂
∂

=γ (2)

Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 

Figure  1.  Damage at beam joint; (a) undamaged joint, (b) damage at the 
upper part, (c) damage at the middle depth, (d) damage at the lower part
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 

.  The 
Hooke’s law for plane stress can be written as:

mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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(b)       (c)             (d)
Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 

xyγ are calculated by
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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yx at Lx = and 0=y , the dis-
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
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The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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== x
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 

xyγ are calculated by
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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== x
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 

and 

mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 

(a)

(b)       (c)             (d)
Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 

xyγ are calculated by
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.
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written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
be found as
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 

xyγ are calculated by
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 

0=∂
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== x
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
be found as
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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Consider a cantilever beam, with length L, height 2a, and out-of-
plane thickness b, as shown in Fig. 2.  The beam is made from an 
isotropic linear solid.  The right end is clamped and the left end is 
subjected to a concentrated force P.  Assuming that b << a, a state 
of plane stress is considered in the beam.  An approximate solution 
to the stress can be calculated from the Airy function

mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.
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where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 

xyγ are calculated by
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 
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yx at Lx = and 0=y , the dis-

placement field corresponding to the stress distribution can 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 
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Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 

stress ( )yxxy ,τ .  The Hooke’s law for plane stress can be 

written as:





























−−
=

















xy

y

x

xy

y

x E

γ
ε
ε

ν
ν

ν

ντ
σ
σ

100
01
01

1 2 (1)

where E denotes Young’s modulus, ν is Poisson’s ratio, 

GE =+ )1(2 ν , and G is shear modulus. The normal strain 

in the x and y directions, xε and yε , and the shear strain 
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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It is found from Eqs. (2) and (4) that the strain energy in 
the transverse direction is related with its shear perfor-
mance.  Using the boundary conditions of 
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 

                                                                                                                                (4)

It is found from Eqs. (2) and (4) that the strain energy in the 
transverse direction is related with its shear performance.  Using the 

boundary conditions of 0=∂
∂

== x
uuu y

yx  at x = L and y = 0, 
the displacement field corresponding to the stress distribution can 
be found as

mance, due to stress concentration and discontinuity of 
load flow, and therefore is prone to deterioration by the 
external effects rather than by a member itself.  Numeri-
cal experiment and design rarely can define the exact 
boundary conditions in spite of the existence of damage at 
the joint or end supports, and the central difference ap-
proximation of the flexural performance yields abruptly 
changed curvature at the end support.  It is obvious that 
the damage at the joint is not detectable with the traditional 
approaches, and thus it is necessary to explicitly establish 
the boundary condition when detecting the performance at 
the joint. 

(a)

(b)       (c)             (d)
Figure 1. Damage at beam joint; (a) undamaged joint, (b) 
damage at the upper part, (c) damage at the middle depth, 
(d) damage at the lower part

This study models the beam element at the joint as two-
dimensional finite elements as shown in Fig. 1 (a) and in-
vestigates the effect of the performance deterioration due 
to the damage at the upper, middle, and lower part of the 
joint as shown in Figs. 1(b), (c), and (d), respectively.  
The proposed method is performed by evaluating the dif-
ference of receptance magnitude in the FRFs between the 
undamaged and damaged states. Considering that the mea-
surement cannot be taken on the damage region itself, this 
study discusses the measurement ranges within which the 
damage can be regarded as detectable.  The study also 
considers the effect of the noise contaminated in the meas-
ured data on the capability of the proposed method in de-
tecting the damage.  The observation of this numerical 
experiment will provide some fundamental information in 
detecting the damage at the joint.

2. FORMULATION
2.1 TWO-DIMENSIONAL PLANE STRESS

The plane stress state of a structure is described by two 
normal stresses ( )yxx ,σ and ( )yxy ,σ , and a shear 
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where E denotes Young’s modulus, ν is Poisson’s ratio, 
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Here, xu and yu represent the displacements in the x
and y directions. 

Consider a cantilever beam, with length L, height 2a,
and out-of-plane thickness b, as shown in Fig. 2.  The 
beam is made from an isotropic linear solid.  The right 
end is clamped and the left end is subjected to a concen-
trated force P.  Assuming that ab << , a state of plane 
stress is considered in the beam.  An approximate solu-
tion to the stress can be calculated from the Airy function
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For investigating the displacement and strain distribu-
tion using the above equations, consider a special case of a 
beam of rectangular cross-section with a thickness of 

mmb 30= , a depth of mma 6002 = , and a length of 
mmL 1000= . The Young’s modulus is GPa200 and the 

Poisson’s ratio is 0.3.  Figures 3(a) and (b) represent xu
and yu according to the axial (x) and depth (y) directions 

of the beam.  The distribution of the displacement xu in 
Fig. 3(a) represents the maximum in the top and bottom of 
the section and zero in the neutral axis.  The displacement 

yu is zero at the clamped end and gradually increases in 
the longitudinal direction of the free end from the clamped 
end. Figure 3(c) exhibits the distribution of the strain 

yε .  It showed the maximum strain at the top and bottom 

of the section of the fixed end and zero strain at the free 
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For investigating the displacement and strain distribution 
using the above equations, consider a special case of a beam of 
rectangular cross-section with a thickness of b = 30mm, a depth 
of 2a = 600mm, and a length of L = 1000mm. The Young’s 
modulus is 200Gpa and the Poisson’s ratio is 0.3.  Figures 3(a) and 
(b) represent xu  and yu  according to the axial (x) and depth (y) 
directions of the beam.  The distribution of the displacement xu  
in Fig. 3(a) represents the maximum in the top and bottom of the 
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section and zero in the neutral axis.  The displacement yu  is zero 
at the clamped end and gradually increases in the longitudinal 
direction of the free end from the clamped end.  Figure 3(c) exhibits 
the distribution of the strain yε .  It showed the maximum strain at 
the top and bottom of the section of the fixed end and zero strain at 
the free end.  The shear strain in Fig. 3(d) displays the maximum at 
the mid-depth of the section and minimum at its top and bottom.

The displacements in the axial and depth directions are utilized 
for calculating the corresponding normal strains of flexural 
performance as well as the shear strain of shear performance. It is 
observed that the damage in the depth direction is deeply related 
to the flexural and/or shear deformation capacity.  Thus, a two-
dimensional model can detect the flexural damage as well as the 
shear damage.

(b)

(c)

end. The shear strain in Fig. 3(d) displays the maximum
at the mid-depth of the section and minimum at its top and 
bottom.

The displacements in the axial and depth directions are 
utilized for calculating the corresponding normal strains of 
flexural performance as well as the shear strain of shear 
performance. It is observed that the damage in the depth 
direction is deeply related to the flexural and/or shear de-
formation capacity.  Thus, a two-dimensional model can 
detect the flexural damage as well as the shear damage.

Figure 2. A cantilevered beam 
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Figure 3. Plane stress element: (a) distribution of xu ,

(b) distribution of yu , (c) distribution of yε , (d)

distribution of xyγ

2.2 FINITE ELEMENT FORMULATION
In this work, the end joint of the beam is modeled by 

two-dimensional elements in the axial and depth directions 
of the section. Each node of the beam model has only 
horizontal and vertical displacements as nodal degrees of 
freedom and no slope as nodal degrees of freedom.  The 
inertia force is included in the equations of equilibrium.  
These types of beam elements can be applied at the joint of 
the beam and other members using discretization along the 
depth as well as the axial direction. 

The dynamic equations of motion for the two-
dimensional beam are
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where t indicates time, ρ is the mass density, and xf
and yf are body forces per unit volume in the x and y

directions,  respectively.  The finite element formulation 
for the dynamic problem of each beam element is obtained 
and its combination leads to a dynamic equation of the 
beam system to be considered. 

Using Rayleigh’s damping, the dynamic behavior of a 
structure that is assumed to be linear and approximately 
discretized for ( )nss 2= degrees of freedom can be de-
scribed by the equations of motion as

( )tfKuuCuM =++  (7)
where M , C and K denote the nn 22 × analytical 
mass, damping and stiffness matrices respectively, n indi-
cates the total number of nodes in the beam system, 

[ ]Tnyxyx uuuu 211=u , and ( )tf is the 12 ×n
excitation vector. Dynamic responses can be expressed in 
the time domain and frequency domain.  For linear sys-
tems there is little loss of information going from the time 
domain to the frequency domain.  In the frequency do-
main, the FRFs are measured directly from the system in-

Figure  2.  A cantilevered beam 
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2.2 FINITE ELEMENT FORMULATION
In this work, the end joint of the beam is modeled by two-

dimensional elements in the axial and depth directions of the 
section.  Each node of the beam model has only horizontal and 
vertical displacements as nodal degrees of freedom and no slope 
as nodal degrees of freedom.  The inertia force is included in the 
equations of equilibrium.  These types of beam elements can 
be applied at the joint of the beam and other members using 
discretization along the depth as well as the axial direction. 

The dynamic equations of motion for the two-dimensional beam 
are
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end. The shear strain in Fig. 3(d) displays the maximum
at the mid-depth of the section and minimum at its top and 
bottom.

The displacements in the axial and depth directions are 
utilized for calculating the corresponding normal strains of 
flexural performance as well as the shear strain of shear 
performance. It is observed that the damage in the depth 
direction is deeply related to the flexural and/or shear de-
formation capacity.  Thus, a two-dimensional model can 
detect the flexural damage as well as the shear damage.
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Figure 3. Plane stress element: (a) distribution of xu ,

(b) distribution of yu , (c) distribution of yε , (d)

distribution of xyγ

2.2 FINITE ELEMENT FORMULATION
In this work, the end joint of the beam is modeled by 

two-dimensional elements in the axial and depth directions 
of the section. Each node of the beam model has only 
horizontal and vertical displacements as nodal degrees of 
freedom and no slope as nodal degrees of freedom.  The 
inertia force is included in the equations of equilibrium.  
These types of beam elements can be applied at the joint of 
the beam and other members using discretization along the 
depth as well as the axial direction. 

The dynamic equations of motion for the two-
dimensional beam are
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where t indicates time, ρ is the mass density, and xf
and yf are body forces per unit volume in the x and y

directions,  respectively.  The finite element formulation 
for the dynamic problem of each beam element is obtained 
and its combination leads to a dynamic equation of the 
beam system to be considered. 

Using Rayleigh’s damping, the dynamic behavior of a 
structure that is assumed to be linear and approximately 
discretized for ( )nss 2= degrees of freedom can be de-
scribed by the equations of motion as

( )tfKuuCuM =++  (7)
where M , C and K denote the nn 22 × analytical 
mass, damping and stiffness matrices respectively, n indi-
cates the total number of nodes in the beam system, 

[ ]Tnyxyx uuuu 211=u , and ( )tf is the 12 ×n
excitation vector. Dynamic responses can be expressed in 
the time domain and frequency domain.  For linear sys-
tems there is little loss of information going from the time 
domain to the frequency domain.  In the frequency do-
main, the FRFs are measured directly from the system in-
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where t indicates time, ρ  is the mass density, and fx and fy are 
body forces per unit volume in the x and y directions,  respectively.  
The finite element formulation for the dynamic problem of each 
beam element is obtained and its combination leads to a dynamic 
equation of the beam system to be considered. 

Using Rayleigh’s damping, the dynamic behavior of a structure 
that is assumed to be linear and approximately discretized for 
( )nss 2=  degrees of freedom can be described by the equations of 

motion as
                              

end. The shear strain in Fig. 3(d) displays the maximum
at the mid-depth of the section and minimum at its top and 
bottom.

The displacements in the axial and depth directions are 
utilized for calculating the corresponding normal strains of 
flexural performance as well as the shear strain of shear 
performance. It is observed that the damage in the depth 
direction is deeply related to the flexural and/or shear de-
formation capacity.  Thus, a two-dimensional model can 
detect the flexural damage as well as the shear damage.
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Figure 3. Plane stress element: (a) distribution of xu ,

(b) distribution of yu , (c) distribution of yε , (d)

distribution of xyγ

2.2 FINITE ELEMENT FORMULATION
In this work, the end joint of the beam is modeled by 

two-dimensional elements in the axial and depth directions 
of the section. Each node of the beam model has only 
horizontal and vertical displacements as nodal degrees of 
freedom and no slope as nodal degrees of freedom.  The 
inertia force is included in the equations of equilibrium.  
These types of beam elements can be applied at the joint of 
the beam and other members using discretization along the 
depth as well as the axial direction. 

The dynamic equations of motion for the two-
dimensional beam are
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where t indicates time, ρ is the mass density, and xf
and yf are body forces per unit volume in the x and y

directions,  respectively.  The finite element formulation 
for the dynamic problem of each beam element is obtained 
and its combination leads to a dynamic equation of the 
beam system to be considered. 

Using Rayleigh’s damping, the dynamic behavior of a 
structure that is assumed to be linear and approximately 
discretized for ( )nss 2= degrees of freedom can be de-
scribed by the equations of motion as

( )tfKuuCuM =++  (7)
where M , C and K denote the nn 22 × analytical 
mass, damping and stiffness matrices respectively, n indi-
cates the total number of nodes in the beam system, 

[ ]Tnyxyx uuuu 211=u , and ( )tf is the 12 ×n
excitation vector. Dynamic responses can be expressed in 
the time domain and frequency domain.  For linear sys-
tems there is little loss of information going from the time 
domain to the frequency domain.  In the frequency do-
main, the FRFs are measured directly from the system in-
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where M , C and K  denote the nn 22 ×  analytical mass, damping 
and stiffness matrices respectively, n indicates the total number 
of nodes in the beam system, 

end. The shear strain in Fig. 3(d) displays the maximum
at the mid-depth of the section and minimum at its top and 
bottom.

The displacements in the axial and depth directions are 
utilized for calculating the corresponding normal strains of 
flexural performance as well as the shear strain of shear 
performance. It is observed that the damage in the depth 
direction is deeply related to the flexural and/or shear de-
formation capacity.  Thus, a two-dimensional model can 
detect the flexural damage as well as the shear damage.
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Figure 3. Plane stress element: (a) distribution of xu ,

(b) distribution of yu , (c) distribution of yε , (d)

distribution of xyγ

2.2 FINITE ELEMENT FORMULATION
In this work, the end joint of the beam is modeled by 

two-dimensional elements in the axial and depth directions 
of the section. Each node of the beam model has only 
horizontal and vertical displacements as nodal degrees of 
freedom and no slope as nodal degrees of freedom.  The 
inertia force is included in the equations of equilibrium.  
These types of beam elements can be applied at the joint of 
the beam and other members using discretization along the 
depth as well as the axial direction. 

The dynamic equations of motion for the two-
dimensional beam are
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where t indicates time, ρ is the mass density, and xf
and yf are body forces per unit volume in the x and y

directions,  respectively.  The finite element formulation 
for the dynamic problem of each beam element is obtained 
and its combination leads to a dynamic equation of the 
beam system to be considered. 

Using Rayleigh’s damping, the dynamic behavior of a 
structure that is assumed to be linear and approximately 
discretized for ( )nss 2= degrees of freedom can be de-
scribed by the equations of motion as

( )tfKuuCuM =++  (7)
where M , C and K denote the nn 22 × analytical 
mass, damping and stiffness matrices respectively, n indi-
cates the total number of nodes in the beam system, 

[ ]Tnyxyx uuuu 211=u , and ( )tf is the 12 ×n
excitation vector. Dynamic responses can be expressed in 
the time domain and frequency domain.  For linear sys-
tems there is little loss of information going from the time 
domain to the frequency domain.  In the frequency do-
main, the FRFs are measured directly from the system in-

             , and ( )tf  is the 12 ×n  excitation vector. Dynamic responses can 
be expressed in the time domain and frequency domain.  For 
linear systems there is little loss of information going from the time 
domain to the frequency domain.  In the frequency domain, the 
FRFs are measured directly from the system instead of measuring 
the displacement and the force individually. In the time-domain 
each component is described by a mass, damping and stiffness 
matrix.

The dynamic characteristics of the beam system can be 
investigated by the modal data of the natural frequency and its 
corresponding mode shape or by its corresponding FRFs data.   The 

Figure  3.  Plane stress element: (a) distribution of xu ,
(b) distribution of yu , (c) distribution of yε ,

(d) distribution of 

end. The shear strain in Fig. 3(d) displays the maximum
at the mid-depth of the section and minimum at its top and 
bottom.

The displacements in the axial and depth directions are 
utilized for calculating the corresponding normal strains of 
flexural performance as well as the shear strain of shear 
performance. It is observed that the damage in the depth 
direction is deeply related to the flexural and/or shear de-
formation capacity.  Thus, a two-dimensional model can 
detect the flexural damage as well as the shear damage.

Figure 2. A cantilevered beam 
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Figure 3. Plane stress element: (a) distribution of xu ,

(b) distribution of yu , (c) distribution of yε , (d)

distribution of xyγ

2.2 FINITE ELEMENT FORMULATION
In this work, the end joint of the beam is modeled by 

two-dimensional elements in the axial and depth directions 
of the section. Each node of the beam model has only 
horizontal and vertical displacements as nodal degrees of 
freedom and no slope as nodal degrees of freedom.  The 
inertia force is included in the equations of equilibrium.  
These types of beam elements can be applied at the joint of 
the beam and other members using discretization along the 
depth as well as the axial direction. 

The dynamic equations of motion for the two-
dimensional beam are
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where t indicates time, ρ is the mass density, and xf
and yf are body forces per unit volume in the x and y

directions,  respectively.  The finite element formulation 
for the dynamic problem of each beam element is obtained 
and its combination leads to a dynamic equation of the 
beam system to be considered. 

Using Rayleigh’s damping, the dynamic behavior of a 
structure that is assumed to be linear and approximately 
discretized for ( )nss 2= degrees of freedom can be de-
scribed by the equations of motion as

( )tfKuuCuM =++  (7)
where M , C and K denote the nn 22 × analytical 
mass, damping and stiffness matrices respectively, n indi-
cates the total number of nodes in the beam system, 

[ ]Tnyxyx uuuu 211=u , and ( )tf is the 12 ×n
excitation vector. Dynamic responses can be expressed in 
the time domain and frequency domain.  For linear sys-
tems there is little loss of information going from the time 
domain to the frequency domain.  In the frequency do-
main, the FRFs are measured directly from the system in-
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relationships between the FRF and the modal parameters should 
be established for a successful modal testing.  Inserting tje Ω= Uu  
and tje Ω= Ff  into Eq. (7) and expressing it in the frequency 
domain, it follows that

stead of measuring the displacement and the force indivi-
dually. In the time-domain each component is described by 
a mass, damping and stiffness matrix.

The dynamic characteristics of the beam system can be 
investigated by the modal data of the natural frequency 
and its corresponding mode shape or by its corresponding 
FRFs data.   The relationships between the FRF and the 
modal parameters should be established for a successful 
modal testing.  Inserting tje Ω= Uu and tje Ω= Ff
into Eq. (7) and expressing it in the frequency domain, it 
follows that

( ) ( ) ( )Ω=ΩΩ+Ω− FUCMK j2 (8)

where 1−=j , Ω denotes the excitation frequency, and 

( ) [ ]TsFFF 21=ΩF and 

( ) [ ]TsUUU 21=ΩU represent the Fourier trans-
form of the force and response vectors f and u , respec-
tively.   Equation (8) is valid for an excitation frequency 
Ω .  Defining the FRF matrix Ĥ ,

[ ]CMKH Ω+Ω−≡ i2ˆ (9)
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ijĤ denotes the displacement response measured at loca-

tion i due to the unit force input at location j.
Assuming the initial system is unexpectedly damaged, 

in this case, the dynamic response in the frequency domain 
will not satisfy Eq. (8). Based on the changes in the FRF 
characteristics, this study detects the damage at the beam’s 
joint.  

3. NUMERICAL EXPERIMENT FOR DAMAGE DE-
TECTION AT WELDED JOINT
3.1 UNDAMAGED STATE

Figure 4 depicts the finite element model of a beam 
welded to a column surface.  The beam adjacent to the 
joint is modeled by 126 nodes and 192 triangular elements. 
The beam has elastic modulus of GPa200 , Poisson’s ratio 
of 0.3, total depth of mm300 and unit mass per volume 
of 0kg/mm3 .  The beam has a length of mm410
measured from the end support and is connected by a 
welding of mm5 thickness to the column surface. The 
damping matrix was established as being proportional to 
the stiffness matrix.

Figure 5 represents the displacement modes in the axial 
(x) and depth (y) directions corresponding to the first natu-
ral frequency.  In the plots, the numbers inside the figure 
indicate the distance from the left end joint of the beam in 
millimeter. The lines represent the mode shape at each 
section without noise, and the symbol ‘ ㅁ’ indicates the 
mode shape data contaminated with 3% noise at the cor-
responding section.  It is observed in Fig. 5(a) that the x-

Figure 4. Finite element modeling of the beam in the vicin-
ity of the joint (unit:mm)

component of the mode shape describes the flexural mode 
and exhibits the maximum displacements at the top and 
bottom of the section and the minimum displacement at 
the neutral axis at the mid-depth of the section. The flexur-
al modes at each section in the axial direction of the beam 
take very similar shapes, but their magnitude gradually 
increases with the increase in the distance from the joint.  
The y-component of the mode shape in Fig. 5(b) exhibits 
the maximum at the top and bottom of the section and the 
minimum in the vicinity of the neutral axis. It is found that 
the modal deformation in both axial and depth directions 
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Figure 5. Mode shape of two-dimensional beam model: (a) 

x-component, (b) y-component

                   (8)

where 1−=j ,  Ω  denotes the excitation frequenc y,  and 
( ) [ ]TsFFF 21=ΩF  and ( ) [ ]TsUUU 21=ΩU

represent the Fourier transform of the force and response vectors  
f  and u , respectively.   Equation (8) is valid for an excitation 
frequency Ω.  Defining the FRF matrix Ĥ , 

[ ]CMKH Ω+Ω−≡ i2ˆ                                               (9)

where 	

ijĤ  denotes the displacement response measured at location i due 
to the unit force input at location j.

Assuming the initial system is unexpectedly damaged, in this 
case, the dynamic response in the frequency domain will not satisfy 
Eq. (8). Based on the changes in the FRF characteristics, this study 
detects the damage at the beam’s joint.  

3. NUMERICAL EXPERIMENT FOR DAMAGE DETECTION AT 
WELDED JOINT

3.1 UNDAMAGED STATE
Figure 4 depicts the finite element model of a beam welded to a 
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nodes and 192 triangular elements. The beam has elastic modulus 
of 200GPa, Poisson’s ratio of 0.3, total depth of 300mm and unit 
mass per volume of 30kg/mm.  The beam has a length of 410mm 
measured from the end support and is connected by a welding of 
5mm thickness to the column surface. The damping matrix was 
established as being proportional to the stiffness matrix.

Figure 5 represents the displacement modes in the axial (x) and 
depth (y) directions corresponding to the first natural frequency.  In 
the plots, the numbers inside the figure indicate the distance from 
the left end joint of the beam in millimeter. The lines represent 
the mode shape at each section without noise, and the symbol 
‘ㅁ’ indicates the mode shape data contaminated with 3% noise 
at the corresponding section.  It is observed in Fig. 5(a) that the 
x-component of the mode shape describes the flexural mode and 
exhibits the maximum displacements at the top and bottom of the 
section and the minimum displacement at the neutral axis at the 
mid-depth of the section. The flexural modes at each section in 
the axial direction of the beam take very similar shapes, but their 
magnitude gradually increases with the increase in the distance 
from the joint.  The y-component of the mode shape in Fig. 5(b) 
exhibits the maximum at the top and bottom of the section and 
the minimum in the vicinity of the neutral axis. It is found that the 
modal deformation in both axial and depth directions increases 
with the increase in the distance from the joint.  As can be seen 

stead of measuring the displacement and the force indivi-
dually. In the time-domain each component is described by 
a mass, damping and stiffness matrix.

The dynamic characteristics of the beam system can be 
investigated by the modal data of the natural frequency 
and its corresponding mode shape or by its corresponding 
FRFs data.   The relationships between the FRF and the 
modal parameters should be established for a successful 
modal testing.  Inserting tje Ω= Uu and tje Ω= Ff
into Eq. (7) and expressing it in the frequency domain, it 
follows that

( ) ( ) ( )Ω=ΩΩ+Ω− FUCMK j2 (8)

where 1−=j , Ω denotes the excitation frequency, and 

( ) [ ]TsFFF 21=ΩF and 

( ) [ ]TsUUU 21=ΩU represent the Fourier trans-
form of the force and response vectors f and u , respec-
tively.   Equation (8) is valid for an excitation frequency 
Ω .  Defining the FRF matrix Ĥ ,

[ ]CMKH Ω+Ω−≡ i2ˆ (9)
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ijĤ denotes the displacement response measured at loca-

tion i due to the unit force input at location j.
Assuming the initial system is unexpectedly damaged, 

in this case, the dynamic response in the frequency domain 
will not satisfy Eq. (8). Based on the changes in the FRF 
characteristics, this study detects the damage at the beam’s 
joint.  

3. NUMERICAL EXPERIMENT FOR DAMAGE DE-
TECTION AT WELDED JOINT
3.1 UNDAMAGED STATE

Figure 4 depicts the finite element model of a beam 
welded to a column surface.  The beam adjacent to the 
joint is modeled by 126 nodes and 192 triangular elements. 
The beam has elastic modulus of GPa200 , Poisson’s ratio 
of 0.3, total depth of mm300 and unit mass per volume 
of 0kg/mm3 .  The beam has a length of mm410
measured from the end support and is connected by a 
welding of mm5 thickness to the column surface. The 
damping matrix was established as being proportional to 
the stiffness matrix.

Figure 5 represents the displacement modes in the axial 
(x) and depth (y) directions corresponding to the first natu-
ral frequency.  In the plots, the numbers inside the figure 
indicate the distance from the left end joint of the beam in 
millimeter. The lines represent the mode shape at each 
section without noise, and the symbol ‘ ㅁ’ indicates the 
mode shape data contaminated with 3% noise at the cor-
responding section.  It is observed in Fig. 5(a) that the x-

Figure 4. Finite element modeling of the beam in the vicin-
ity of the joint (unit:mm)

component of the mode shape describes the flexural mode 
and exhibits the maximum displacements at the top and 
bottom of the section and the minimum displacement at 
the neutral axis at the mid-depth of the section. The flexur-
al modes at each section in the axial direction of the beam 
take very similar shapes, but their magnitude gradually 
increases with the increase in the distance from the joint.  
The y-component of the mode shape in Fig. 5(b) exhibits 
the maximum at the top and bottom of the section and the 
minimum in the vicinity of the neutral axis. It is found that 
the modal deformation in both axial and depth directions 
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Figure 5. Mode shape of two-dimensional beam model: (a) 

x-component, (b) y-component

from Fig. 5, the 3% noise rarely affects the mode shape to be 
obtained numerically.

Figure 6 represents the receptance magnitude at each section in 
the axial and depth directions of the beam corresponding to the 
first resonance frequency.  Here the receptance magnitude indicates 
the numerical values measured at all positions due to the impulse 
in the vertical direction at node 92.  Considering that the FRF 
receptance magnitude takes the absolute value, its x-component 
in Fig. 6(a) is similar to the corresponding mode shape of Fig. 
5(a), where the maximum displacement values were at the top and 
bottom of the beam and their minimum ones at the mid-depth 
of the beam section. The difference between the two values of the 
maximum and minimum magnitudes gradually increases as the 

stead of measuring the displacement and the force indivi-
dually. In the time-domain each component is described by 
a mass, damping and stiffness matrix.

The dynamic characteristics of the beam system can be 
investigated by the modal data of the natural frequency 
and its corresponding mode shape or by its corresponding 
FRFs data.   The relationships between the FRF and the 
modal parameters should be established for a successful 
modal testing.  Inserting tje Ω= Uu and tje Ω= Ff
into Eq. (7) and expressing it in the frequency domain, it 
follows that

( ) ( ) ( )Ω=ΩΩ+Ω− FUCMK j2 (8)

where 1−=j , Ω denotes the excitation frequency, and 

( ) [ ]TsFFF 21=ΩF and 

( ) [ ]TsUUU 21=ΩU represent the Fourier trans-
form of the force and response vectors f and u , respec-
tively.   Equation (8) is valid for an excitation frequency 
Ω .  Defining the FRF matrix Ĥ ,

[ ]CMKH Ω+Ω−≡ i2ˆ (9)

where ( )
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ijĤ denotes the displacement response measured at loca-

tion i due to the unit force input at location j.
Assuming the initial system is unexpectedly damaged, 

in this case, the dynamic response in the frequency domain 
will not satisfy Eq. (8). Based on the changes in the FRF 
characteristics, this study detects the damage at the beam’s 
joint.  

3. NUMERICAL EXPERIMENT FOR DAMAGE DE-
TECTION AT WELDED JOINT
3.1 UNDAMAGED STATE

Figure 4 depicts the finite element model of a beam 
welded to a column surface.  The beam adjacent to the 
joint is modeled by 126 nodes and 192 triangular elements. 
The beam has elastic modulus of GPa200 , Poisson’s ratio 
of 0.3, total depth of mm300 and unit mass per volume 
of 0kg/mm3 .  The beam has a length of mm410
measured from the end support and is connected by a 
welding of mm5 thickness to the column surface. The 
damping matrix was established as being proportional to 
the stiffness matrix.

Figure 5 represents the displacement modes in the axial 
(x) and depth (y) directions corresponding to the first natu-
ral frequency.  In the plots, the numbers inside the figure 
indicate the distance from the left end joint of the beam in 
millimeter. The lines represent the mode shape at each 
section without noise, and the symbol ‘ ㅁ’ indicates the 
mode shape data contaminated with 3% noise at the cor-
responding section.  It is observed in Fig. 5(a) that the x-

Figure 4. Finite element modeling of the beam in the vicin-
ity of the joint (unit:mm)

component of the mode shape describes the flexural mode 
and exhibits the maximum displacements at the top and 
bottom of the section and the minimum displacement at 
the neutral axis at the mid-depth of the section. The flexur-
al modes at each section in the axial direction of the beam 
take very similar shapes, but their magnitude gradually 
increases with the increase in the distance from the joint.  
The y-component of the mode shape in Fig. 5(b) exhibits 
the maximum at the top and bottom of the section and the 
minimum in the vicinity of the neutral axis. It is found that 
the modal deformation in both axial and depth directions 
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Figure 5. Mode shape of two-dimensional beam model: (a) 

x-component, (b) y-component

Figure  4.  Finite element modeling of the beam in the vicinity of the joint 
(unit:mm)

stead of measuring the displacement and the force indivi-
dually. In the time-domain each component is described by 
a mass, damping and stiffness matrix.

The dynamic characteristics of the beam system can be 
investigated by the modal data of the natural frequency 
and its corresponding mode shape or by its corresponding 
FRFs data.   The relationships between the FRF and the 
modal parameters should be established for a successful 
modal testing.  Inserting tje Ω= Uu and tje Ω= Ff
into Eq. (7) and expressing it in the frequency domain, it 
follows that

( ) ( ) ( )Ω=ΩΩ+Ω− FUCMK j2 (8)

where 1−=j , Ω denotes the excitation frequency, and 

( ) [ ]TsFFF 21=ΩF and 

( ) [ ]TsUUU 21=ΩU represent the Fourier trans-
form of the force and response vectors f and u , respec-
tively.   Equation (8) is valid for an excitation frequency 
Ω .  Defining the FRF matrix Ĥ ,

[ ]CMKH Ω+Ω−≡ i2ˆ (9)
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ijĤ denotes the displacement response measured at loca-

tion i due to the unit force input at location j.
Assuming the initial system is unexpectedly damaged, 

in this case, the dynamic response in the frequency domain 
will not satisfy Eq. (8). Based on the changes in the FRF 
characteristics, this study detects the damage at the beam’s 
joint.  

3. NUMERICAL EXPERIMENT FOR DAMAGE DE-
TECTION AT WELDED JOINT
3.1 UNDAMAGED STATE

Figure 4 depicts the finite element model of a beam 
welded to a column surface.  The beam adjacent to the 
joint is modeled by 126 nodes and 192 triangular elements. 
The beam has elastic modulus of GPa200 , Poisson’s ratio 
of 0.3, total depth of mm300 and unit mass per volume 
of 0kg/mm3 .  The beam has a length of mm410
measured from the end support and is connected by a 
welding of mm5 thickness to the column surface. The 
damping matrix was established as being proportional to 
the stiffness matrix.

Figure 5 represents the displacement modes in the axial 
(x) and depth (y) directions corresponding to the first natu-
ral frequency.  In the plots, the numbers inside the figure 
indicate the distance from the left end joint of the beam in 
millimeter. The lines represent the mode shape at each 
section without noise, and the symbol ‘ ㅁ’ indicates the 
mode shape data contaminated with 3% noise at the cor-
responding section.  It is observed in Fig. 5(a) that the x-

Figure 4. Finite element modeling of the beam in the vicin-
ity of the joint (unit:mm)

component of the mode shape describes the flexural mode 
and exhibits the maximum displacements at the top and 
bottom of the section and the minimum displacement at 
the neutral axis at the mid-depth of the section. The flexur-
al modes at each section in the axial direction of the beam 
take very similar shapes, but their magnitude gradually 
increases with the increase in the distance from the joint.  
The y-component of the mode shape in Fig. 5(b) exhibits 
the maximum at the top and bottom of the section and the 
minimum in the vicinity of the neutral axis. It is found that 
the modal deformation in both axial and depth directions 
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Figure 5. Mode shape of two-dimensional beam model: (a) 

x-component, (b) y-componentFigure  5.  Mode shape of two-dimensional beam model: (a) x-component, 
(b) y-component
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distance from the joint increases.  The y-component of the FRF 
in Fig. 6(b) is also similar to that of the mode shape curve of Fig. 
5(b), and its magnitude gradually increases with the increase in the 
distance from the joint.  Also, it is observed that the plots are rarely 
affected by the 3% noise included in the measured data. In this 
work, the damage at a part of the beam section will be evaluated 
and detected by observing the changes in the FRFs before and after 
the occurrence of the damage. 

3.2 DAMAGE STATE
Consider again the beam in Fig. 4 of Section 3.1 with three 

damage cases at its welded joint except E = 100GPa and h = 
300mm. The measurement was carried out beyond 6mm from the 
beam end in order to avoid the coincidence of measurement and 
damage locations. Case 1, Case 2 and Case 3 are considered with 
damage of 30% stiffness loss due to poor welding or performance 
deterioration of the joint, as shown in Figs. 7(a)-(c), respectively.   
Case 1 has damage at elements 1, 2, 3 and 4; Case 2 has damage at 
elements 5, 6, 7 and 8; and Case 3 has damage at elements 9, 10, 11 
and 12.  This work utilized the receptance magnitude measured at 
all nodes due to the impact in the vertical direction at node 92 on 
the top surface of the beam. Figure 8 shows the difference in the 
receptance magnitude between the damaged and undamaged states 
corresponding to the first resonance frequency of the undamaged 
state.  

The difference of the receptance magnitude is defined as 

increases with the increase in the distance from the joint.  
As can be seen from Fig. 5, the 3% noise rarely affects the 
mode shape to be obtained numerically.

Figure 6 represents the receptance magnitude at each 
section in the axial and depth directions of the beam cor-
responding to the first resonance frequency.  Here the 
receptance magnitude indicates the numerical values 
measured at all positions due to the impulse in the vertical 
direction at node 92.  Considering that the FRF recep-
tance magnitude takes the absolute value, its x-component 
in Fig. 6(a) is similar to the corresponding mode shape of 
Fig. 5(a), where the maximum displacement values were at 
the top and bottom of the beam and their minimum ones at 
the mid-depth of the beam section. The difference between 
the two values of the maximum and minimum magnitudes 
gradually increases as the distance from the joint increases.  
The y-component of the FRF in Fig. 6(b) is also similar to 
that of the mode shape curve of Fig. 5(b), and its magni-
tude gradually increases with the increase in the distance 
from the joint.  Also, it is observed that the plots are rare-
ly affected by the 3% noise included in the measured data. 
In this work, the damage at a part of the beam section will 
be evaluated and detected by observing the changes in the 
FRFs before and after the occurrence of the damage. 
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Figure 6. FRF receptance magnitude of two-dimensional 

beam model: 
(a) x-component, (b) y-component

3.2 DAMAGE STATE
Consider again the beam in Fig. 4 of Section 3.1 with 

three damage cases at its welded joint except 
GPaE 100= and mmh 300= . The measurement was 

carried out beyond mm6 from the beam end in order to 
avoid the coincidence of measurement and damage loca-
tions. Case 1, Case 2 and Case 3 are considered with dam-
age of 30% stiffness loss due to poor welding or perfor-
mance deterioration of the joint, as shown in Figs. 7(a)-(c), 
respectively.   Case 1 has damage at elements 1, 2, 3 and 
4; Case 2 has damage at elements 5, 6, 7 and 8; and Case 3 
has damage at elements 9, 10, 11 and 12.  This work uti-
lized the receptance magnitude measured at all nodes due 
to the impact in the vertical direction at node 92 on the top 
surface of the beam. Figure 8 shows the difference in the
receptance magnitude between the damaged and unda-
maged states corresponding to the first resonance frequen-
cy of the undamaged state.  

The difference of the receptance magnitude is defined as
( ) ( )diui HH 184,184, − , 252,2,1 =i (10)

where the subscripts u and d represent the undamaged and 
damaged states, respectively, and the number 184 indicates 
the vertical degree of freedom at node 92.  

Figures 8(a)-(d) represent the difference of the recep-
tance magnitude between the two states at distance mm17
from the joint.  The difference in the plots enunciate that 
the damage exists somewhere in the model.  Figure 8(a) 
represents the x-component of the difference of the recep-
tance magnitude of Cases 1 and 3.  The plot exhibits the 
minimum value in the vicinity of the mid-depth.  The 
differences between the maximum values of Cases 1 and 3 
at the top and bottom of the section give an indication of 
the damage. The behavior in the y-component in the dif-
ference of the receptance magnitude of Cases 1 and 3, 
shown in Figure 8(b), has a similar trend to that of the x-
component shown in Figure 8(a).  Thus it is recognized 
that the x- and y-components can be utilized as an index to 
detect the damage related with the flexural performance in 
the vicinity of the joint.  The x-component of the differ-
ence of the receptance magnitude of Case 2, as shown in 
Fig. 8(c), represents a very small increase in the depth di-
rection compared to those of Cases 1 and 3.  The small

(a)

where the subscripts u and d represent the undamaged and 
damaged states, respectively, and the number 184 indicates the 

vertical degree of freedom at node 92.  
Figures 8(a)-(d) represent the difference of the receptance 

magnitude between the two states at distance 17mm from the 
joint.  The difference in the plots enunciate that the damage exists 
somewhere in the model.  Figure 8(a) represents the x-component 
of the difference of the receptance magnitude of Cases 1 and 3.  The 
plot exhibits the minimum value in the vicinity of the mid-depth.  
The differences between the maximum values of Cases 1 and 3 at 
the top and bottom of the section give an indication of the damage. 
The behavior in the y-component in the difference of the receptance 
magnitude of Cases 1 and 3, shown in Figure 8(b), has a similar 
trend to that of the x-component shown in Figure 8(a).  Thus it 

increases with the increase in the distance from the joint.  
As can be seen from Fig. 5, the 3% noise rarely affects the 
mode shape to be obtained numerically.

Figure 6 represents the receptance magnitude at each 
section in the axial and depth directions of the beam cor-
responding to the first resonance frequency.  Here the 
receptance magnitude indicates the numerical values 
measured at all positions due to the impulse in the vertical 
direction at node 92.  Considering that the FRF recep-
tance magnitude takes the absolute value, its x-component 
in Fig. 6(a) is similar to the corresponding mode shape of 
Fig. 5(a), where the maximum displacement values were at 
the top and bottom of the beam and their minimum ones at 
the mid-depth of the beam section. The difference between 
the two values of the maximum and minimum magnitudes 
gradually increases as the distance from the joint increases.  
The y-component of the FRF in Fig. 6(b) is also similar to 
that of the mode shape curve of Fig. 5(b), and its magni-
tude gradually increases with the increase in the distance 
from the joint.  Also, it is observed that the plots are rare-
ly affected by the 3% noise included in the measured data. 
In this work, the damage at a part of the beam section will 
be evaluated and detected by observing the changes in the 
FRFs before and after the occurrence of the damage. 
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Figure 6. FRF receptance magnitude of two-dimensional 

beam model: 
(a) x-component, (b) y-component

3.2 DAMAGE STATE
Consider again the beam in Fig. 4 of Section 3.1 with 

three damage cases at its welded joint except 
GPaE 100= and mmh 300= . The measurement was 

carried out beyond mm6 from the beam end in order to 
avoid the coincidence of measurement and damage loca-
tions. Case 1, Case 2 and Case 3 are considered with dam-
age of 30% stiffness loss due to poor welding or perfor-
mance deterioration of the joint, as shown in Figs. 7(a)-(c), 
respectively.   Case 1 has damage at elements 1, 2, 3 and 
4; Case 2 has damage at elements 5, 6, 7 and 8; and Case 3 
has damage at elements 9, 10, 11 and 12.  This work uti-
lized the receptance magnitude measured at all nodes due 
to the impact in the vertical direction at node 92 on the top 
surface of the beam. Figure 8 shows the difference in the
receptance magnitude between the damaged and unda-
maged states corresponding to the first resonance frequen-
cy of the undamaged state.  

The difference of the receptance magnitude is defined as
( ) ( )diui HH 184,184, − , 252,2,1 =i (10)

where the subscripts u and d represent the undamaged and 
damaged states, respectively, and the number 184 indicates 
the vertical degree of freedom at node 92.  

Figures 8(a)-(d) represent the difference of the recep-
tance magnitude between the two states at distance mm17
from the joint.  The difference in the plots enunciate that 
the damage exists somewhere in the model.  Figure 8(a) 
represents the x-component of the difference of the recep-
tance magnitude of Cases 1 and 3.  The plot exhibits the 
minimum value in the vicinity of the mid-depth.  The 
differences between the maximum values of Cases 1 and 3 
at the top and bottom of the section give an indication of 
the damage. The behavior in the y-component in the dif-
ference of the receptance magnitude of Cases 1 and 3, 
shown in Figure 8(b), has a similar trend to that of the x-
component shown in Figure 8(a).  Thus it is recognized 
that the x- and y-components can be utilized as an index to 
detect the damage related with the flexural performance in 
the vicinity of the joint.  The x-component of the differ-
ence of the receptance magnitude of Case 2, as shown in 
Fig. 8(c), represents a very small increase in the depth di-
rection compared to those of Cases 1 and 3.  The small
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Figure  6.  FRF receptance magnitude of two-dimensional beam model: 
(a) x-component, (b) y-component
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(a)
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(c)
Figure 7. Finite element modeling modeled by 192 trian-

gular elements adjacent to the joint (unit:mm):
(a) Case 1, (b) Case 2, (c) Case 3

variation implies that any damage does not exist at the 
upper or lower part of the beam, unlike Cases 1 and 3.  
The y-component of the difference of the receptance mag-
nitude of Case 2 in Fig. 8(d) exhibits the maximum in the 
vicinity of the mid-depth. Therefore, it is investigated 
whether the damage in the middle of the beam section is 
related to the shear performance and is governed by its y-
component rather than its x-component.  The lines and 
‘ㅁ’ in the plots represent the ones obtained from meas-
ured data without noise and with 3% noise, respectively. 
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Figure  7.  Finite element modeling modeled by 192 triangular 
elements adjacent to the joint (unit:mm): 

(a) Case 1, (b) Case 2, (c) Case 3
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is recognized that the x- and y-components can be utilized as an 
index to detect the damage related with the flexural performance in 
the vicinity of the joint.  The x-component of the difference of the 
receptance magnitude of Case 2, as shown in Fig. 8(c), represents 
a very small increase in the depth direction compared to those of 
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(c)
Figure 7. Finite element modeling modeled by 192 trian-

gular elements adjacent to the joint (unit:mm):
(a) Case 1, (b) Case 2, (c) Case 3

variation implies that any damage does not exist at the 
upper or lower part of the beam, unlike Cases 1 and 3.  
The y-component of the difference of the receptance mag-
nitude of Case 2 in Fig. 8(d) exhibits the maximum in the 
vicinity of the mid-depth. Therefore, it is investigated 
whether the damage in the middle of the beam section is 
related to the shear performance and is governed by its y-
component rather than its x-component.  The lines and 
‘ㅁ’ in the plots represent the ones obtained from meas-
ured data without noise and with 3% noise, respectively. 
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Figure 7. Finite element modeling modeled by 192 trian-

gular elements adjacent to the joint (unit:mm):
(a) Case 1, (b) Case 2, (c) Case 3

variation implies that any damage does not exist at the 
upper or lower part of the beam, unlike Cases 1 and 3.  
The y-component of the difference of the receptance mag-
nitude of Case 2 in Fig. 8(d) exhibits the maximum in the 
vicinity of the mid-depth. Therefore, it is investigated 
whether the damage in the middle of the beam section is 
related to the shear performance and is governed by its y-
component rather than its x-component.  The lines and 
‘ㅁ’ in the plots represent the ones obtained from meas-
ured data without noise and with 3% noise, respectively. 
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Figure 7. Finite element modeling modeled by 192 trian-

gular elements adjacent to the joint (unit:mm):
(a) Case 1, (b) Case 2, (c) Case 3

variation implies that any damage does not exist at the 
upper or lower part of the beam, unlike Cases 1 and 3.  
The y-component of the difference of the receptance mag-
nitude of Case 2 in Fig. 8(d) exhibits the maximum in the 
vicinity of the mid-depth. Therefore, it is investigated 
whether the damage in the middle of the beam section is 
related to the shear performance and is governed by its y-
component rather than its x-component.  The lines and 
‘ㅁ’ in the plots represent the ones obtained from meas-
ured data without noise and with 3% noise, respectively. 
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Figure 7. Finite element modeling modeled by 192 trian-

gular elements adjacent to the joint (unit:mm):
(a) Case 1, (b) Case 2, (c) Case 3

variation implies that any damage does not exist at the 
upper or lower part of the beam, unlike Cases 1 and 3.  
The y-component of the difference of the receptance mag-
nitude of Case 2 in Fig. 8(d) exhibits the maximum in the 
vicinity of the mid-depth. Therefore, it is investigated 
whether the damage in the middle of the beam section is 
related to the shear performance and is governed by its y-
component rather than its x-component.  The lines and 
‘ㅁ’ in the plots represent the ones obtained from meas-
ured data without noise and with 3% noise, respectively. 
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Figure 8. Receptance magnitude difference between un-
damaged and damaged states: (a) x-component at location 

mm17 of Cases 1 and 3, (b) y-component at location 
mm17 of Cases 1 and 3, (c) x-component at location 
mm17 of Case 2, (d) y-component at location mm17 of 

Case 2, (e) x-component at location mm47 of Cases 1 

and 3, (f) y-component at location mm47 of Cases 1 and 
3, (g) x-component at location mm47 of Case 2, (h) y-
component at location mm47 of Case 2

Again, it is shown that the noise rarely affects the perfor-
mance of the presented damage detection method.

When checking the difference in the receptance magni-
tudes in Figs. 8(e)-(h) corresponding to the location 

mm47 from the joint, one can still see the possibility of 
recognizing the damage at the joint.  From the variation 
of the x-component of the receptance difference in Figs. 
8(e) and (f), the damage at Cases 1 and 3 can be explicitly 
detected at the lower and upper parts, respectively, of the 
section.  The x-component plot of Case 2 in Fig. 8(g) 
shows a very slight increase compared to Cases 1 and 3, 
and it indicates that the damage does not exist at the upper 
or lower parts of the section as shown in Fig. 8(c). From 
the observation of Figs. 8(g) and (h) it becomes necessary 
to investigate the admissible measurement distance from 
the joint for detecting the damage in the middle of the 
beam section.

3.3. EFFECT OF MEASUREMENT LOCATIONS
In this section we investigate the regions where the 

damage can be detected according to the movement of the 
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Figure 9. Receptance magnitude difference between un-
damaged and damaged states according to the distance
from the joint: (a) x-component of Case 3, (b) x-
component of Case 2 
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Figure 8. Receptance magnitude difference between un-
damaged and damaged states: (a) x-component at location 

mm17 of Cases 1 and 3, (b) y-component at location 
mm17 of Cases 1 and 3, (c) x-component at location 
mm17 of Case 2, (d) y-component at location mm17 of 

Case 2, (e) x-component at location mm47 of Cases 1 

and 3, (f) y-component at location mm47 of Cases 1 and 
3, (g) x-component at location mm47 of Case 2, (h) y-
component at location mm47 of Case 2

Again, it is shown that the noise rarely affects the perfor-
mance of the presented damage detection method.

When checking the difference in the receptance magni-
tudes in Figs. 8(e)-(h) corresponding to the location 

mm47 from the joint, one can still see the possibility of 
recognizing the damage at the joint.  From the variation 
of the x-component of the receptance difference in Figs. 
8(e) and (f), the damage at Cases 1 and 3 can be explicitly 
detected at the lower and upper parts, respectively, of the 
section.  The x-component plot of Case 2 in Fig. 8(g) 
shows a very slight increase compared to Cases 1 and 3, 
and it indicates that the damage does not exist at the upper 
or lower parts of the section as shown in Fig. 8(c). From 
the observation of Figs. 8(g) and (h) it becomes necessary 
to investigate the admissible measurement distance from 
the joint for detecting the damage in the middle of the 
beam section.

3.3. EFFECT OF MEASUREMENT LOCATIONS
In this section we investigate the regions where the 

damage can be detected according to the movement of the 
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Figure 9. Receptance magnitude difference between un-
damaged and damaged states according to the distance
from the joint: (a) x-component of Case 3, (b) x-
component of Case 2 
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Again, it is shown that the noise rarely affects the perfor-
mance of the presented damage detection method.

When checking the difference in the receptance magni-
tudes in Figs. 8(e)-(h) corresponding to the location 

mm47 from the joint, one can still see the possibility of 
recognizing the damage at the joint.  From the variation 
of the x-component of the receptance difference in Figs. 
8(e) and (f), the damage at Cases 1 and 3 can be explicitly 
detected at the lower and upper parts, respectively, of the 
section.  The x-component plot of Case 2 in Fig. 8(g) 
shows a very slight increase compared to Cases 1 and 3, 
and it indicates that the damage does not exist at the upper 
or lower parts of the section as shown in Fig. 8(c). From 
the observation of Figs. 8(g) and (h) it becomes necessary 
to investigate the admissible measurement distance from 
the joint for detecting the damage in the middle of the 
beam section.

3.3. EFFECT OF MEASUREMENT LOCATIONS
In this section we investigate the regions where the 
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Again, it is shown that the noise rarely affects the perfor-
mance of the presented damage detection method.

When checking the difference in the receptance magni-
tudes in Figs. 8(e)-(h) corresponding to the location 

mm47 from the joint, one can still see the possibility of 
recognizing the damage at the joint.  From the variation 
of the x-component of the receptance difference in Figs. 
8(e) and (f), the damage at Cases 1 and 3 can be explicitly 
detected at the lower and upper parts, respectively, of the 
section.  The x-component plot of Case 2 in Fig. 8(g) 
shows a very slight increase compared to Cases 1 and 3, 
and it indicates that the damage does not exist at the upper 
or lower parts of the section as shown in Fig. 8(c). From 
the observation of Figs. 8(g) and (h) it becomes necessary 
to investigate the admissible measurement distance from 
the joint for detecting the damage in the middle of the 
beam section.
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Figure  8.  Receptance magnitude difference between undamaged and 
damaged states: (a) x-component at location 17mm of Cases 1 and 3, (b) 
y-component at location 17mm of Cases 1 and 3, (c) x-component at 
location 17mm of Case 2, (d) y-component at location 17mm of Case 2, (e) 
x-component at location 17mm of Cases 1 and 3, (f) y-component at location 
17mm of Cases 1 and 3, (g) x-component at location 17mm of Case 2, (h) 
y-component at location 17mm of Case 2
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Cases 1 and 3.  The small variation implies that any damage does 
not exist at the upper or lower part of the beam, unlike Cases 1 and 
3.  The y-component of the difference of the receptance magnitude 
of Case 2 in Fig. 8(d) exhibits the maximum in the vicinity of the 
mid-depth. Therefore, it is investigated whether the damage in the 
middle of the beam section is related to the shear performance 
and is governed by its y-component rather than its x-component.  
The lines and ‘ㅁ’ in the plots represent the ones obtained from 
measured data without noise and with 3% noise, respectively. 

Again, it is shown that the noise rarely affects the performance of 
the presented damage detection method.

When checking the difference in the receptance magnitudes in 
Figs. 8(e)-(h) corresponding to the location 47mm from the joint, 
one can still see the possibility of recognizing the damage at the 
joint.  From the variation of the x-component of the receptance 
difference in Figs. 8(e) and (f), the damage at Cases 1 and 3 can be 
explicitly detected at the lower and upper parts, respectively, of the 
section.  The x-component plot of Case 2 in Fig. 8(g) shows a very 
slight increase compared to Cases 1 and 3, and it indicates that the 
damage does not exist at the upper or lower parts of the section 
as shown in Fig. 8(c).  From the observation of Figs. 8(g) and (h) 
it becomes necessary to investigate the admissible measurement 
distance from the joint for detecting the damage in the middle of 
the beam section.

3.3. EFFECT OF MEASUREMENT LOCATIONS
In this section we investigate the regions where the damage 

can be detected according to the movement of the measurement 
locations in the axial direction from the joint.  Figure 9 displays 
the x-component of the difference of the receptance magnitude 
according to the distance from the joint.  It is observed from Fig. 
9(a) that the damage cannot be detected at lower parts of the beam 
because of the small differences between the FRF components with 
the increase in the distance from the end support. But the damage 
can be detected when the measurements were performed in the 
neighborhood of the support.  Also, the measurement location 
rarely affects distribution shape regardless of the measurement 
distance from the joint.  And it is observed from Fig. 9(b) that 
the distribution shape of the x-component takes almost the same 
shapes regardless of the distance from the joint such that the 
damage cannot be recognized. It is clear that the damage related 
to the vertical resisting performance at the joint can be evaluated 
in the region corresponding to 1/6 of the total depth 50mm of the 
beam.  This study showed that structural damage related to the 
flexural as well as the shear performance at the joint can be detected 
by measuring the FRFs in the vicinity of the joint.

4. CONCLUSIONS

This study presented a new approach to detecting damage at the 
end joint of flexural beams.  The damage at the end joint rarely 
can be detected using a one-dimensional finite element model 
because the measured data describe the flexural response under 
the assumption of prescribed end conditions.  Modeling the beam 
joint as two-dimensional elements, this study investigated methods 
to detect the damage in the axial and depth directions of the beam 
section.  It has been shown that the damage can be evaluated by 
investigating the x- and y-components of the difference of the 
receptance magnitude of the FRFs before and after the damage.  
This study also demonstrated the importance of locating the 
measurements in the vicinity of the joint for better detecting 
damage related to flexural as well as shear performances.  Also, it 
was shown that the proposed method is rarely affected by external 
noise. 
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Again, it is shown that the noise rarely affects the perfor-
mance of the presented damage detection method.

When checking the difference in the receptance magni-
tudes in Figs. 8(e)-(h) corresponding to the location 

mm47 from the joint, one can still see the possibility of 
recognizing the damage at the joint.  From the variation 
of the x-component of the receptance difference in Figs. 
8(e) and (f), the damage at Cases 1 and 3 can be explicitly 
detected at the lower and upper parts, respectively, of the 

section.  The x-component plot of Case 2 in Fig. 8(g) 
shows a very slight increase compared to Cases 1 and 3, 
and it indicates that the damage does not exist at the upper 
or lower parts of the section as shown in Fig. 8(c). From 
the observation of Figs. 8(g) and (h) it becomes necessary 
to investigate the admissible measurement distance from 
the joint for detecting the damage in the middle of the 
beam section.
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measurement locations in the axial direction from the joint. 
Figure 9 displays the x-component of the difference of the 
receptance magnitude according to the distance from the 
joint.  It is observed from Fig. 9(a) that the damage can-
not be detected at lower parts of the beam because of the 
small differences between the FRF components with the 
increase in the distance from the end support. But the 
damage can be detected when the measurements were per-
formed in the neighborhood of the support.  Also, the 
measurement location rarely affects distribution shape re-
gardless of the measurement distance from the joint.  And
it is observed from Fig. 9(b) that the distribution shape of 
the x-component takes almost the same shapes regardless 
of the distance from the joint such that the damage cannot 
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mance of the presented damage detection method.

When checking the difference in the receptance magni-
tudes in Figs. 8(e)-(h) corresponding to the location 

mm47 from the joint, one can still see the possibility of 
recognizing the damage at the joint.  From the variation 
of the x-component of the receptance difference in Figs. 
8(e) and (f), the damage at Cases 1 and 3 can be explicitly 
detected at the lower and upper parts, respectively, of the 

section.  The x-component plot of Case 2 in Fig. 8(g) 
shows a very slight increase compared to Cases 1 and 3, 
and it indicates that the damage does not exist at the upper 
or lower parts of the section as shown in Fig. 8(c). From 
the observation of Figs. 8(g) and (h) it becomes necessary 
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the joint for detecting the damage in the middle of the 
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measurement locations in the axial direction from the joint. 
Figure 9 displays the x-component of the difference of the 
receptance magnitude according to the distance from the 
joint.  It is observed from Fig. 9(a) that the damage can-
not be detected at lower parts of the beam because of the 
small differences between the FRF components with the 
increase in the distance from the end support. But the 
damage can be detected when the measurements were per-
formed in the neighborhood of the support.  Also, the 
measurement location rarely affects distribution shape re-
gardless of the measurement distance from the joint.  And
it is observed from Fig. 9(b) that the distribution shape of 
the x-component takes almost the same shapes regardless 
of the distance from the joint such that the damage cannot 

Figure  9.  Receptance magnitude difference between undamaged and 
damaged states according to the distance from the joint: (a) x-component of 
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