• 제목/요약/키워드: Planarization effect

검색결과 78건 처리시간 0.022초

탄소 나노튜브 함유 Solderable 이방성 도전성 접착제의 신뢰성 특성에 관한 연구 (Reliability Properties of Carbon Nanotube-filled Solderable Anisotropic Conductive Adhesives)

  • 임병승;이정일;김종민
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.15-20
    • /
    • 2017
  • In this paper, two types of assemblies using CNT-filled SACAs (with 0.03 wt% CNTs and without CNT) were prepared to investigate the influence of carbon nanotubes (CNTs) on the reliability properties of solderable anisotropic conductive adhesives (SACAs) with a low-melting-point alloy (LMPA). Two types of reliability test including thermal shock (TS: -55 to $125^{\circ}C$, 1000 cycles) and high-temperature and high-humidity (HTHH: $85^{\circ}C$, 85% RH, 1000 h) tests were conducted. The SACA assemblies with and without CNTs showed stable electrical reliability properties due to the formation of wide and stable metallurgical interconnection between corresponding metallizations by the molten LMPA fillers. Although the mechanical pull strength of CNT-filled SACA assemblies was decreased after thermal aging (because of the excessive layer growth and planarization of the IMCs), the CNT-filled SACA with 0.03wt% CNTs showed enhanced mechanical reliability properties compared with the SACA assemblies no CNTs. This enhancement in mechanical performance was due to the reinforcement effect of the CNTs. These results demonstrate that CNTs within the CNT-filled SACAs can improve the reliability properties of CNT-filled SACAs joints due to their superior physical properties.

Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향 (Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal)

  • 김인권;김태곤;조병권;손일룡;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

CMP 결과에 영향을 미치는 열적거동 특성에 관한 연구 (Investigation of Thermal Behavior Characteristic in Chemical Mechanical Polishing Performance)

  • 정영석;김형재;최재영;김구연;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1283-1287
    • /
    • 2004
  • The design rules are being more strict with requirement of operation speed and development of IC industry. For this reason, required minimum line-width has been narrowed under sub-micron region. As the length of minimum line-width is narrowed, local and global planarization are being prominent. CMP(Chemical-Mechanical Polishing), one of the planarizarion technology, is a process which polishes with the ascent of chemical reaction and relative velocity between pad and wafer without surface defects. CMP is performed with a complex interaction among many factors, how CMP has an interaction with such factors is not evident. Accordingly, the studies on this are still carrying out. Therefore, an examination of the CMP phenomena and an accurate understanding of compositive factors are urgently needed. In this paper, we will consider of the relations between the effects of temperature which influences many factors having an effect on polishing results and the characteristics of CMP in order to understand and estimate the influence of temperature. Then, through the interaction of shown temperature and polishing result, we could expect to boost fundamental understanding on complex CMP phenomena.

  • PDF

SiC 표면 거칠기에 미치는 습식식각의 영향 (The Effect of Surface Roughness on SiC by Wet Chemical Etching)

  • 김재관;조영제;한승철;이혜용;이지면
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.748-753
    • /
    • 2009
  • The surface morphology and the surface roughness of n-type SiC induced by wet-treatment using 45% KOH and buffered oxide etchant (BOE-1HF : $6H_2O$) were investigated by atomic force microscopy (AFM). While Si-face of SiC could be etched by alkali solutions such as KOH, acidic solutions such as BOE were hardly able to etch SiC. When the rough SiC samples were used, the surface roughness of etched sample was decreased after wet-treatment regardless of etchant, due to the planarization the of surface by widening of scratches formed by mechanical polishing. It was observed that the initial etching was affected by the energetically unstable sites, such as dangling bond and steps. However, when a relatively smooth sample was used, the surface roughness was rapidly increased after treatment at $180^{\circ}C$ for 1 hr and at room temperature for 4 hr by using KOH solution, resulting from the nano-sized structures such as pores and bumps. This indicates that porous SiC surface can be achieved by using purely chemical treatment.

Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향 (Effect of pH in Sodium Periodate based Slurry on Ru CMP)

  • 김인권;조병권;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

구리 CMP시 비이온 계면활성제의 알루리마 슬러리 안정성에 대한 효과 (Characteristics by Surfactant Condition at Copper CMP)

  • 이도원;김남훈;김상용;서용진;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1288-1291
    • /
    • 2004
  • In this study, physical characteristics of alumina slurry on variation of pH value and the effect of non-ionic surfactants on alumina slurry for copper chemical mechanical planarization (CMP) slurry have been investigated. After pH value of the slurry with alumina abrasive was changed by adding various amount of $HNO^3$ or KOH, the differences of settling rate, particle size, and zeta-potential were estimated. Better settling rates were shown in slurries with alumina abrasive at near pH 1. Higher zeta-potential was shown at around pH 2 in alumina slurry and the point of zero charge (PZC) was measured at about pH $9\sim10$. Non-ionic surfactant was added in the slurry with 5wt% alumina abrasive to get its effect on slurry practically. Abrasive size was smaller increased when amount of surfactant increased in slurry with P-4 as abrasive; on the other side, it was smaller when amount of surfactant decreased with AES-12. Variation of zeta-potential has no tendency with adding surfactant; however, values of zeta-potential were between $35\sim50mV$. The proper amount of surfactant was $0.1\sim1.0wt%$ in slurry with P-4 and $0.5\sim1.0wt%$ in slurry with AES-12 respectively. Excellent dispersion stabilization was obtained by addition of non-ionic surfactant

  • PDF

Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향 (Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization)

  • 이상호;이승호;강영재;김인권;박진구
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.

Study of Inhibition Characteristics of Slurry Additives in Copper CMP using Force Spectroscopy

  • Lee, Hyo-Sang;Philipossian Ara;Babu Suryadevara V.;Patri Udaya B.;Hong, Young-Ki;Economikos Laertis;Goldstein Michael
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권1호
    • /
    • pp.5-10
    • /
    • 2007
  • Using a reference slurry, ammonium dodecyl sulfate (ADS), an anionic and environmentally friendly surfactant, was investigated as an alternative to BTA for its inhibition and lubrication characteristics. Results demonstrated that the inhibition efficiency of ADS was superior to that of BTA. Coefficient of friction (COF) was the lowest when the slurry contained ADS. This suggested that adsorbed ADS on the surface provided lubricating action thereby reducing the wear between the contacting surfaces. Temperature results were consistent with the COF and removal rate data. ADS showed the lowest temperature rise again confirming the softening effect of the adsorbed surfactant layer and less energy dissipation due to friction. Spectral analysis of shear force showed that increasing the pad-wafer sliding velocity at constant wafer pressure shifted the high frequency spectral peaks to lower frequencies while increasing the variance of the frictional force. Addition of ADS reduced the fluctuating component of the shear force and the extent of the pre-existing stick-slip phenomena caused by the kinematics of the process and collision event between pad asperities with the wafer. By contrast, in the case of BTA, there were no such observed benefits but instead undesirable effects were seen at some polishing conditions. This work underscored the importance of real-time force spectroscopy in elucidating the adsorption, lubrication and inhibition of additives in slurries in CMP.

자성체 코어 형상에 따른 마이크로 플럭스게이트 센서의 검출 특성 (The Performance of Micro Fluxgate Sensor with Magnetic Core Shape)

  • 조중희;최원열
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.508-514
    • /
    • 2004
  • A fluxgate magnetic sensor consists of a solenoid excitation coil, pick-up coil, and magnetic core. We presents the effect of magnetic core shape in a micromachined fluxgate sensor. To observe the performance of fluxgate sensor with magnetic core side width and gap, side width of 125 ${\mu}{\textrm}{m}$, 250 ${\mu}{\textrm}{m}$, and 500 ${\mu}{\textrm}{m}$ were designed in a rectangular-ring shaped core and the gaps of 0 ${\mu}{\textrm}{m}$, 50 ${\mu}{\textrm}{m}$, and 100 ${\mu}{\textrm}{m}$ were also fabricated in a racetrack shaped core. The solenoid coils and magnetic core were separated by benzocyclobutane(BCB) which had high insulation and good planarization characters. Copper coil patterns of 10 ${\mu}{\textrm}{m}$ width and 6${\mu}{\textrm}{m}$ thickness were electroplated on Ti(300 $\AA$) / Cu(1500 $\AA$) seed layers. 3 ${\mu}{\textrm}{m}$ thick N $i_{0.8}$F $e_{0.2.}$(permalloy) film for the magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The magnetic core had the high DC effective permeability of ∼1,300 and coercive field of ∼0.1 Oe. Because the magnetic cores of 500 ${\mu}{\textrm}{m}$ side width and 0 gap had a low magnetic flux leakage, high sensitivity of ∼350 V/T were measured at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. The power consumption of ∼14 ㎽ was measured. The fabricated fluxgate sensor had the very small actual size of 3.0${\times}$1.7 $\textrm{mm}^2$. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.m.m.m.

산화제 첨가에 따른 W-CMP 특성 (W Chemical Mechanical Polishing (CMP) Characteristics by oxidizer addition)

  • 박창준;서용진;이경진;정소영;김철복;김상용;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.46-49
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of $Al_3O_3$ particles in presence of surfactant stabilizing the slurry.

  • PDF