The Effect of Surface Roughness on SiC by Wet Chemical Etching

SiC 표면 거칠기에 미치는 습식식각의 영향

  • Kim, Jae-Kwan (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Jo, Young-Je (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Han, Seung-Cheol (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Lee, Hae-Yong (LumiGNtech) ;
  • Lee, Ji-Myon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 김재관 (순천대학교 재료금속공학과) ;
  • 조영제 (순천대학교 재료금속공학과) ;
  • 한승철 (순천대학교 재료금속공학과) ;
  • 이혜용 ((주)루미지엔테크) ;
  • 이지면 (순천대학교 재료금속공학과)
  • Received : 2009.03.18
  • Published : 2009.11.25

Abstract

The surface morphology and the surface roughness of n-type SiC induced by wet-treatment using 45% KOH and buffered oxide etchant (BOE-1HF : $6H_2O$) were investigated by atomic force microscopy (AFM). While Si-face of SiC could be etched by alkali solutions such as KOH, acidic solutions such as BOE were hardly able to etch SiC. When the rough SiC samples were used, the surface roughness of etched sample was decreased after wet-treatment regardless of etchant, due to the planarization the of surface by widening of scratches formed by mechanical polishing. It was observed that the initial etching was affected by the energetically unstable sites, such as dangling bond and steps. However, when a relatively smooth sample was used, the surface roughness was rapidly increased after treatment at $180^{\circ}C$ for 1 hr and at room temperature for 4 hr by using KOH solution, resulting from the nano-sized structures such as pores and bumps. This indicates that porous SiC surface can be achieved by using purely chemical treatment.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. P. G. Neudeck, J. Electron Mater. 24, 4 (1995) https://doi.org/10.1007/BF02659688
  2. J. L. Cantin, H. J. von Bardeleben, Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, Phys. Rev. Lett. 92, 1 (2004) https://doi.org/10.1103/PhysRevLett.92.015502
  3. M. Mynbaeva, S. E. Saddow, G. Melnychuk, I. Nikitina, M. Scheglov, A. Sitnikova, N. Kuznetsov, and K. Mynbaev, V. Dmitriev, Appl. Phys. Lett. 78, 1 (2001) https://doi.org/10.1063/1.1337628
  4. F. Yun, M. A. Reshchikov, L. He, and H. Morkoc, C. K. Inoki, and T. S. Kuan, Appl. Phys. Lett. 81, 4142 (2002) https://doi.org/10.1063/1.1524304
  5. C. K. Inoki, T. S. Kuan, C. D. Lee, Ashutosh Sagar, R. M. Feenstra, D. D. Koleske, D. J. Diaz, P. W. Bohn, and I. Adesida, J. Eelectron. Mater. 32, 8 (2003)
  6. F. Yun, M. A. Reshchikov, L. He, T. King, D. Huang, H. Morkoç, C. K. Inoki, and T. S. Kuan, Appl. Phys. Lett. 81, 22 (2002) https://doi.org/10.1063/1.1524304
  7. H. S. Kim, J. H. S, and C. G. Park, J. Kor. Inst. Met. & Mater. 43, 1 (2005)
  8. L. Jiang, N. O. V. Plank, M. A. Blauw, R. Cheung, and E. van der Drift, J. Phys. D. 37, 1809 (2004) https://doi.org/10.1088/0022-3727/37/13/012
  9. J. Hong, R. J. Shul, L. Zhang, L. F. Lester, H. Cho, Y. B. Hahn, D. C. Hays, K. B. Jung, S. J. Pearton, C. M. Zetterling, and M. Ostling, J. Electron. Mater. 28, 3 (1999)
  10. J. L. Weyher, S. Lazar, J. Borysiuk, and J. Pernot, Phys. Stat. Sol. 4, 578 (2005)
  11. S. A. Sakwe, R. Muller, and P. J. Wellmann, J. Cryst. Growth. 289, 520 (2006) https://doi.org/10.1016/j.jcrysgro.2005.11.096
  12. Y. Ke, C. Moissin, S. Gaan, R. M. Feenstra, R. P. Devaty, and W. J. Choyke, Mat. Sci. Forum. 527-529, 743 (2006) https://doi.org/10.4028/www.scientific.net/MSF.527-529.743
  13. M. Syvajarvi,z R. Yakimova, and E. Janzen, J. Electrochem. Soc. 147, 3519 (2000) https://doi.org/10.1149/1.1393930
  14. C. K. Park, J. H. An, W. J. Lee, B. C. Shin, and S. Nishino, Mat. Sci. Forum. 527-529, 267 (2006) https://doi.org/10.4028/www.scientific.net/MSF.527-529.267
  15. J. K. Kim, T. S. Kim, Y. J. J, and J. M. Lee, J. Kor. Inst. Met. & Mater. 46, 3 (2008)
  16. S. Nakamura, T. Kimoto, H. Matsunami, S. Tanaka, N. Teraguchi, an,d A. Suzuki, Appl. Phys. Let. 76, 23 (2000)
  17. Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, J. Appl. Phys. 97, 044908 (2005) https://doi.org/10.1063/1.1849432
  18. J. S. Shor and A. D. Kurtz, J. Electrochem. Soc. 141, 778 (1994) https://doi.org/10.1149/1.2054810
  19. G. W. Trusks, Krishnan Raghavachari, G. S. Higashi, and Y. J. Chabal, Phys. Rev. Lett. 65, 504 (1990) https://doi.org/10.1103/PhysRevLett.65.504
  20. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612 (1990) https://doi.org/10.1149/1.2086277
  21. S. W. King, R. J. Nemanich, and R. F. Davis, J. Electrochem. Soc. 146, 1910 (1999) https://doi.org/10.1149/1.1391864