• Title/Summary/Keyword: Planar gate

Search Result 82, Processing Time 0.022 seconds

A Study on Electrical Characteristics and Optimization of Trench Power MOSFET for Industrial Motor Drive

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.365-370
    • /
    • 2013
  • Power MOSFET is developed in power savings, high efficiency, small size, high reliability, fast switching, and low noise. Power MOSFET can be used in high-speed switching transistors devices. Recently attention given to the motor and the application of various technologies. Power MOSFET is a voltage-driven approach switching device and designed to handle on large power, power supplies, converters, motor controllers. In this paper, the 400 V Planar type, and the trench type for realization of low on-resistance are designed. Trench Gate Power MOSFET Vth : 3.25 V BV : 484 V Ron : 0.0395 Ohm has been optimized.

Optimal Process Design of Super Junction MOSFET (Super Juction MOSFET의 공정 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.501-504
    • /
    • 2014
  • This paper was developed and described core-process to implement low on resistance which was the most important characteristics of SJ (super junction) MOSFET. Firstly, using process-simulation, SJ MOSFET optimal structure was set and developed its process flow chart by repeated simulation. Following process flow, gate level process was performed. And source and drain level process was similar to genral planar MOSFET, so the process was the same as the general planar MOSFET. And then to develop deep trench process which was main process of the whole process, after finishing photo mask process, we developed deep trench process. We expected that developed process was necessary to develop SJ MOSFET for automobile semiconductor.

Electrical Characteristics of Semiconductor DI Switching Devices (반도체(半導體) DI switching소자(素子)의 전기적(電氣的) 특성(特性))

  • Jeong, Se-Jin;Lim, Kyoung-Moon;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.110-114
    • /
    • 1990
  • Double Injection Switching Devices consist of $P^+$ and $n^+$ contact separated by a near intrinsic Semiconductor region containing deep trap. A V-Groove Double Injection Switching Devices were proposed for high voltage performance and Optical gating scheme. The experimental result to demonstrate the feasibility of these devices (Planar type, V-Groove type, Injection Gate mode, Optical Gate mode) for practical application are described.

  • PDF

The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices (3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.148-151
    • /
    • 2017
  • This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.

Study of the 1,200 V-Class Floating Island IGBT (1,200 V급 Floating Island IGBT의 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.523-526
    • /
    • 2016
  • This paper was researched about 1,200 V level floating island IGBT (insulated gate bipolar transistor). Presently, 1,200 V level IGBT is used in Inverter for distributed power generation. We analyzed and compared electrical charateristics of the proposed floating island IGBT and conventional IGBT. For analyzing and comparison, we used T-CAD tool and simulated the electrical charateristics of the devices. And we extracted optimal design and process parameter of the devices. As a result of experiments, we obtained 1,456 V and 1,459 V of breakdown voltages, respectively. And we obatined 4.06 V and 4.09 V of threshold voltages, respectively. On the other hand, on-state voltage drop of floating island IGBT was 3.75 V. but on-state vlotage drop of the conventional IGBT was 4.65 V. Therefore, we almost knew that the proposed floating island IGBT was superior than the conventional IGBT in terms of power dissipation.

The GaAs Inversion-type MISFET using Fluoride Gate Insulator (불화물 게이트 절연막을 이용한 반전형 GaAs MISFET)

  • KWang Ho Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.61-66
    • /
    • 1993
  • The interface properties of Fluoride/GaAs structures were investigated. It was foung that rapid thermal annealing(RTA) typically 800-850$^{\circ}C$for 1 min, was useful for improving the interface properties of that structures. The analysis by means of SIMS indicated that interdiffusion of each constitutional atom through the interface was negligible. The interfacial atom bonding model for RTA treatment was proposed. Bases on these results, inversion-type GaAs MISFET was fabricated using standard planar technologies.

  • PDF

AMOLED Panel Using Transparent Bottom Gate IGZO TFT (Bottom Gate IGZO 박막트랜지스터를 이용한 투명 AMOLED 패널 제작)

  • Cho, D.H.;Yang, S.H.;Byun, C.W.;Shin, J.H.;Lee, J.I.;Park, E.S.;Kwon, O.S.;Hwang, C.S.;Chu, H.Y.;Cho, K.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.39-40
    • /
    • 2008
  • We have examined post-annealing and passivation for the transparent bottom gate IGZO TFT having an inverse co-planar structure. The oxygen-vacuum two step annealing enhanced the field effect mobility up to 18 $cm^2$/Vsandthesub-threshold swing down to 0.2V/dec. However, the hysterysis and the bias stability problems could not be solved just by post-annealing. Thus, we have passivated the bottom gate IGZO TFTs with organic and inorganic materials. $Ga_2O_3$, $Al_2O_3$, $SiO_2$ and some polymer materials were effective materials for passivations. The hysterysis and the stability of the TFTs were remarkably improved by the passivations. We have manufactured the AMOLED panel with the transparent bottom gate IGZO TFT array successfully.

  • PDF

Selective Separation of $CO_2/CH_4$ by Pore Structure Modification of Activated Carbon Fiber (활성탄소섬유의 기공구조 변형을 이용한 $CO_2/CH_4$의 선택적 분리 기술)

  • Moon, S.H.;Park, S.Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1027-1034
    • /
    • 2007
  • This research was focused on the selective separation of $CO_2$ or $CH_4$ from mixture of these gases, by controlling the size of pore or pore gate. Pitch based activated carbon fibers(ACF) were used as adsorbents. The size of pore gate was controlled by the molecule having similar size to that of pore opening. After the adsorption of adsorbate on pore surface, planar molecules such as benzene and naphthalene covered the pore gate. The slow release of adsorbate from the pores covered by planar molecules makes apertures between planar molecules covering pore gate and this structure can be fixed by rapid pyrolysis. The control of pore gate using benzene as covering molecules could not accomplished due to the simultaneous volatilization of benzene and adsorbate$(CO_2)$ caused by similar temperatures of benzene volatilization and adsorbate desorption. Therefore we replaced benzene with naphthalene looking for the stability at a $CO_2$ desorption temperature. The naphthalene molecule was adsorbed on the ACF up to 15% of ACF weight and showed no desorption until $100^{\circ}C$, indicating that the molecule could be used as a good cover molecule. Naphthalene could cover almost all the pore gate, reducing BET surface area from 753 $m^2/g$ to 0.7 $m^2/g$. A mixed gas$(CO_2:CH_4=50:50)$ was adsorbed on the naphthalene treated OG-7A ACF. The amount of $CO_2$ adsorption increased with total pressure, whileas thai of $CH_4$ was not so much influenced on the pressure, indicating that $CO_2$ made more compounds on the ACF surface along with total pressure increase. The most $CO_2$ and the least $CH_4$ were adsorbed in the condition of 0.4 atm, resulting in the highly pure $CH_4$ left in ACF.

Advanced IGBT structure for improved reliability (신뢰성 개선된 IGBT 소자 신구조)

  • Lee, Myoung Jin
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1193-1198
    • /
    • 2017
  • The IGBT structure developed in this paper is used as a high power switch semiconductor for DC transmission and distribution and it is expected that it will be used as an important electronic device for new and long distance DC transmission in the future by securing fast switching speed and improved breakdown voltage characteristic. As a new type of next generation power semiconductors, it is designed to improve the switching speed while at the same time improving the breakdown voltage characteristics, reducing power loss characteristics, and achieving high current density advantages at the same time. These improved properties were obtained by further introducing SiO2 into the N-drift region of the Planar IGBT and were compared and analyzed using the Sentaurus TCAD simulation tool.

A Study About Design and Characteristic Improvement According to P-base Concentration Charge of 500 V Planar Power MOSFET (500 V 급 Planar Power MOSFET의 P 베이스 농도 변화에 따른 설계 및 특성 향상에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.284-288
    • /
    • 2013
  • Power MOSFETs(Metal Oxide Semiconductor Field Effect Transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. We have experimental results and explanations on the doping profile dependence of the electrical behavior of the vertical MOSFET. The device is fabricated as $8.25{\mu}m$ cell pitch and $4.25{\mu}m$ gate width. The performances of device with various p base doping concentration are compared at Vth from 1.77 V to 4.13 V. Also the effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for various applications can be further optimized at power device.