• Title/Summary/Keyword: Pixels

Search Result 2,456, Processing Time 0.029 seconds

Determination of Object Similarity Closure Using Shared Neighborhood Connectivity

  • Radhakrishnan, Palanikumar;Arokiasamy, Clementking
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.3
    • /
    • pp.41-44
    • /
    • 2014
  • Sequential object analysis are playing vital role in real time application in computer vision and object detections.Measuring the similarity in two images are very important issue any authentication activities with how best to compare two independent images. Identification of similarities of two or more sequential images is also the important in respect to moving of neighborhoods pixels. In our study we introduce the morphological and shared near neighborhoods concept which produces a sufficient results of comparing the two images with objects. Considering the each pixel compare with 8-connectivity pixels of second image. For consider the pixels we expect the noise removed images are to be considered, so we apply the morphological transformations such as opening, closing with erosion and dilations. RGB of pixel values are compared for the two sequential images if it is similar we include the pixels in the resultant image otherwise ignore the pixels. All un-similar pixels are identified and ignored which produces the similarity of two independent images. The results are produced from the images with objects and gray levels. It produces the expected results from our process.

Spatial Compare Filter Based Real-Time dead Pixel Correction Method for Infrared Camera

  • Moon, Kil-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose a new real-time dead pixel detection method based on spatial compare filtering, which are usually used in the small target detection. Actually, the soft dead and the small target are cast in the same mold. Our proposed method detect and remove the dead pixels as applying the spatial compare filtering, into the pixel outputs of a detector after the non-uniformity correction. Therefore, we proposed method can effectively detect and replace the dead pixels regardless of the non-uniformity correction performance. In infrared camera, there are usually many dead detector pixels which produce abnormal output caused by manufactural process or operational environment. There are two kind of dead pixel. one is hard dead pixel which electronically generate abnormal outputs and other is soft dead pixel which changed and generated abnormal outputs by the planning process. Infrared camera have to perform non-uniformity correction because of structural and material properties of infrared detector. The hard dead pixels whose offset values obtained by non-uniformity correction are much larger or smaller than the average can be detected easily as dead pixels. However, some dead pixels(soft dead pixel) can remain, because of the difficulty of uncleared decision whether normal pixel or abnormal pixel.

Quality Improvement Scheme of Interpolated Image using the Characteristics of the Adjacent Pixels (인접 픽셀들의 특성을 이용한 보간 영상의 화질 개선 기법)

  • Jung, Soo-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.95-102
    • /
    • 2011
  • Interpolation schemes are used widely in image magnification. Magnified image generated by interpolation scheme is composed of the known pixels in input image and the interpolated pixels estimated from the known pixels in input image. So, as the interpolated pixels are estimated to have locality which exists in real images, the magnified image is much closer to the real image. In this paper, an efficient interpolation scheme was proposed to provide locality for the interpolated pixels by using the characteristics of adjacent pixels in input image. The quality of magnified image using the proposed scheme was improved. In experiment, PSNR(Peak Signal to Noise Ratio) was used to evaluate the performance of the proposed scheme. The PSNR's of the magnified images generated by the proposed scheme were greater than those of the magnified images generated by the previous interpolation methods.

Impulse Noise Filtering through Evolutionary Approach using Noise-free Pixels (무잡음 화소를 이용한 진화적인 방법의 임펄스 잡음 필터링)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.347-352
    • /
    • 2013
  • In impulse noise filtering techniques window size play an important role. Usually, an appropriate window is determined according to the noise density. A small window may not be able to suppress noise properly whereas a large window may remove edges and fine image details. Moreover, the value of the central pixel is estimated by considering all pixels within the window. In this work, contrary to the previous approaches, we propose an iterative impulse noise removal scheme that emphasizes on noise-free pixels within a small neighborhood. The iterative process continues until all noisy pixels are replaced with the estimated pixels. In order to estimate the optimal value for a noisy pixel, a genetic programming (GP) based estimator is evolved that takes few noise-free pixels as input. The estimator is constituent of noise-free pixels, arithmetic operators and random constants. Experimental results show that theproposed scheme is capable of removing impulse noise effectively while preserving the fine image details. Especially, our approach has shown effectiveness against high impulse noise density.

A Study on Fast Extraction of Endmembers from Hyperspectral Image Data (초분광 영상자료의 Endmember 추출 속도 향상에 관한 연구)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.347-355
    • /
    • 2012
  • A fast algorithm for endmember extraction is proposed in this study which extracts min. and max. pixels from each band after MNF transform as candidate pixels for endmember. This method finds endmembers not from the entire image pixels but only from the previously extracted candidate pixels. The experimental results by N-FINDR using a simulated hyperspectral image data and AVIRIS Cuprite image data showed that the proposed fast algorithm extracts the same endmembers with the conventional methods. More studies on the effect of noise and more adaptive criteria in extracting candidate pixels are expected to increase the usability of this method for more fast and efficient analysis of hyperspectral image data.

A NEW METHOD OF MASKING CLOUD-AFFECTED PIXELS IN OCEAN COLOR IMAGERY BASED ON SPECTRAL SHAPE OF WATER REFLECTANCE

  • Fukushima, Hajime;Tamura, Jin;Toratani, Mitsuhiro;Murakami, Hiroshi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.25-28
    • /
    • 2006
  • We propose a new method of masking cloud-affected pixels in satellite ocean color imageries such as of GLI. Those pixels, mostly found around cloud pixels or in scattered cloud area, have anomalous features in either in chlorophyll-a estimate or in water reflectance. This artifact is most likely caused by residual error of inter-band registration correction. Our method is to check the pixel-wise 'soundness' of the spectral water reflectance Rw retrieved after the atmospheric correction. First, we define two spectral ratio between water reflectance, IRR1 and IRR2, each defined as RW(B1)/RW (B3) RW (B3) and as RW (B2)/RW(B4) respectively, where $B1{\sim}B4$ stand for 4 consecutive visible bands. We show that an almost linear relation holds over log-scaled IRR1 and IRR2 for shipmeasured RW data of SeaBAM in situ data set and for GLI cloud-free Level 2 sub-scenes. The method we propose is to utilize this nature, identifying those pixels that show significant discrepancy from that relationship. We apply this method to ADEOS-II/GLI ocean color data to evaluate the performance over Level-2 data, which includes different water types such as case 1, turbid case 2 and coccolithophore bloom waters.

  • PDF

AN APPROACH TO THE TRAINING OF A SUPPORT VECTOR MACHINE (SVM) CLASSIFIER USING SMALL MIXED PIXELS

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • It is important that the training stage of a supervised classification is designed to provide the spectral information. On the design of the training stage of a classification typically calls for the use of a large sample of randomly selected pure pixels in order to characterize the classes. Such guidance is generally made without regard to the specific nature of the application in-hand, including the classifier to be used. An approach to the training of a support vector machine (SVM) classifier that is the opposite of that generally promoted for training set design is suggested. This approach uses a small sample of mixed spectral responses drawn from purposefully selected locations (geographical boundaries) in training. A sample of such data should, however, be easier and cheaper to acquire than that suggested by traditional approaches. In this research, we evaluated them against traditional approaches with high-resolution satellite data. The results proved that it can be used small mixed pixels to derive a classification with similar accuracy using a large number of pure pixels. The approach can also reduce substantial costs in training data acquisition because the sampling locations used are commonly easy to observe.

  • PDF

Fast I Slice Encoding/Decoding Method in H.264/AVC (H.264/AVC에서 고속 I Slice 부호화/복호화 방법)

  • Oh, Hyung-Suk;Shin, Dong-In;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This paper develops a fast method performing intra prediction which only restores block boundary pixels without decoding all blocks in an I slice of H.264/AVC. To accomplish this, we develop a fast integer inverse DCT scheme that quickly decodes residual block boundary which can be consisted of references pixels. we add the restored block boundary pixels and appropriate calculated prediction pixels for each intra prediction mode and consist of needed reference pixels. The experiments showed that the proposed method produces the reliable performance with reducing the computational complexity, compared to conventional method when applied to H.264/AVC integer DCT.

Simple Fuzzy Rule Based Edge Detection

  • Verma, O.P.;Jain, Veni;Gumber, Rajni
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.575-591
    • /
    • 2013
  • Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.

Hough Transform Using Straight Line Information of Edge Pixels (에지 화소들의 직선 정보를 이용한 허프변환)

  • Kim, Jin-tae;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.674-677
    • /
    • 2017
  • The Hough transform is the most representative algorithm for a straight line detection based on edge pixels. It shows excellent performance in a simple linear image but requires a considerable amount of computation in a noisy or complex image and has a problem of detecting a pseudo straight line easily. In this paper, we propose a straight line detection algorithm to solve the problem of the conventional Hough transform. The proposed algorithm detects the straight line information of edge pixels by using principal component analysis (PCA) before performing Hough transform and performs the Hough transform of the limited slope area in the valid edge pixels based on the detected straight line information of edge pixels. Simulation results show that the proposed algorithm reduces the amount of computation as well as eliminates pseudo straight lines.

  • PDF