• Title/Summary/Keyword: Pitting test

Search Result 163, Processing Time 0.022 seconds

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

Effect of the Amount of CH4 Content on the Characteristics of Surface Layers of Low Temperature Plasma Nitrocarburizied STS 204Cu Stainless Steel (STS 204Cu 스테인리스강의 저온 플라즈마 침질탄화 처리 시 CH4 가스 함량에 따른 경화층 (S-Phase) 거동)

  • Lee, Insup;Kim, Hojun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Plasma Nitriding treatment was performed on STS 204Cu stainless steel samples at a temperature of $400^{\circ}C$ for 15 hours with varying $N_2$ content as 10%, 15% and 25%. Regardless of the content of $N_2$, S-Phase which is a hardened layer of Nitrogen (N) supersaturated phase, was formed in the surface of plasma treated samples. When $N_2$ content was 25%, the thickness of the hardened layer reached up to about $7{\mu}m$ and the surface hardness reached a value of $560Hv_{0.05}$, which is about 2.5 times higher than that of untreated sample (as received $220Hv_{0.05}$). From potentiodynamic polarization test, it was observed that compared to as received sample, the corrosion potential and the corrosion current density of the plasma treated samples were decreased regardless of the $N_2$ content, but the corrosion resistance was not increased much due to the precipitation of $Cr_2N$. On the other hand, pitting potential of the samples treated with 10% and 15% $N_2$ was higher than that of as received sample, however, the samples treated with 25% exhibited a lower pitting potential. Therefore, 10% $N_2$ content was selected as optimum plasma nitriding condition and to further increase both the thickness and surface hardness and the corrosion resistance of the hardened layer, different $CH_4$ content such as 1%, 3% and 5% was introduced into the plasma nitriding atmosphere. With 1% $CH_4$, the thickness of the hardened layer reached up to about $11{\mu}m$ and the surface hardness was measured as about $620Hv_{0.05}$, which is about 2.8 times that of as received sample. And the corrosion resistance of the plasma treated sample by using 1% $CH_4$ was improved significantly due to much higher pitting potential, and lower corrosion current density. When the $CH_4$ content was more than 1%, the thickness and surface hardness of the hardened layer decreased slightly and the corrosion resistance also decreased.

Stress Corrosion Cracking Susceptibility Evaluation by Small Punch Test (소형펀치시험법에 의한 응력부식균열 감수성평가에 관한 연구)

  • 유효선;이송인;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2033-2042
    • /
    • 1993
  • In conventional SCC susceptibility test, there are constant strain test, constant load test, slow strain rate test(SSRT) and K$_{ISCC}$ test. Among them, the SSRT method is much more aggressive in producing SCC than the other tests, so that the test time of it is considerably reduced. But this SSRT method has mostly been worked using the uniaxial tensile specimen untill now. Therefore, the SSRT method using the tensile specimen(Ten-SSRT) has much difficulty in SCC susceptibility evaluation of a localized region like weldment and the advantage material of high order. Recentely, the small punch(SP) test method using miniaturized small specimen is the very effective test method for fracture strength evaluation of a localized region like weldment and fusion reactor wall irradiated in the nuclear power plant. This paper investigated the possibility of SCC susceptibility evaluation by the SP-SSRT method using the miniaturized small specimen. Therefore, we obtained the result that the SP-SSRT had the possibility for the evaluations of SCC susceptibility for shorter time to corrosive environment compare to Ten-SSRT which was conventional method.

The development of high wear resistant tappet in diesel engine (Diesel Engine용 내마모 초경 Tappet 개발)

  • 송근철;심동섭;김경운;조정환
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.313-322
    • /
    • 1998
  • Tappet has wear problems like scuffing or pitting because of high Hertzian contact stress by line contact type between cam and tappet. To overcome this wear problems, we developed the high wear resistant tappet. Developed tappet consists of WC base alloyed tip and steel body. These two parts were directly bonded each other at high temperature under vacuum condition. To estimate the wear resistance of tungsten carbide tappet, we perform the scuffing test and engine dynamo test. As the result, tungsten carbide tappet has better wear resistance than conventionally chilled iron tappet.

  • PDF

Galvanic Corrosion of AZ31 Mg Alloy Contacting with Copper

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.151.1-151.1
    • /
    • 2017
  • This work studied the corrosion behavior of AZ31 Mg alloy galvanically coupled with Cu during immersion in 0.1 and 0.5 M NaCl solutions by in-situ observation and galvanic corrosion current measurement using a zero resistance ammeter. The corrosion behavior of AZ31 Mg alloy was also studied by salt spray test. The average galvanic corrosion density during 2 h immersion in 0.1 NaCl solution was found to decrease as an exponential function with increasing the surface area ratios between AZ31:Cu or with increasing the distance between AZ31 and Cu. The corrosion of electrodeposited Cu on AZ31 Mg alloy was concentrated at the area next to Cu (about 5 mm for immersion test and 2 mm for salt spray test) and pitting corrosion was accelerated at the area beyond the severely corroded area by the galvanic coupling effect.

  • PDF

Effect of Drawing Rate on the Corrosion Behavior of Al Alloy Tubes for Automotive Cooling System (인발률에 따른 자동차 냉각 배관용 Al 합금의 부식 특성에 관한 연구)

  • Park, Byung-Joon;Kim, Jung-Gu;Ahn, Seung-Ho;Kwak, Dong-Ho;Sohn, Hyun-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.489-494
    • /
    • 2008
  • The effect of drawing rate on the electrochemical properties of 3003 Al alloys in 5 wt.% NaCl solution was investigated by electrochemical techniques (potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy (EIS)) and surface analyses (OM, SEM, EDS). Four kinds of automotive pipe materials were prepared (raw material, drawing rate = 5, 10, 15%). As the drawing rate of Al alloy tube increased, the pitting corrosion resistance increased due to the enrichment of Al oxides on the surface.

A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW (슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구)

  • Moon, In-June;Jang, Bok-Su;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

Electrochemical Migration Characteristics of Sn-3.0Ag-0.5Cu Solder Alloy in NaBr and NaF Solutions (NaBr 및 NaF 용액에 대한 Sn-3.0Ag-0.5Cu 솔더 합금의 Electrochemical Migration 특성)

  • Jung, Ja-Young;Jang, Eun-Jung;Yoo, Young-Ran;Lee, Shin-Bok;Kim, Young-Sik;Joo, Young-Chang;Chung, Tai-Joo;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.57-63
    • /
    • 2007
  • Electrochemical migration characteristics of Pb-free solder alloys are quantitatively correlated with corrosion characteristics in harsh environment conditions. In-situ water drop test and corrosion resistance test for Sn-3.0Ag-0.5Cu solder alloys were carried out in NaBr and NaF solutions to obtain the electrochemical migration lifetime and pitting potential, respectively. Sn-3.0Ag-0.5Cu solder alloy shows similar ionization and electrochemical migration behavior with pure Sn because of Ag and Cu do not migrate due to the formation of resistant intermetallic compounds inside solder itself. Electrochemical migration lifetime in NaBr is longer than in NaF, which seems to be closely related to higher pitting potential in NaBr than NaF solution. Therefore, it was revealed that electrochemical migration lifetime of Sn-3.0Ag-0.5Cu solder alloys showed good correlation to the corrosion resistance, and also the initial ionization step at anode side is believed to be the rate-determining step during electrochemical migration of Pb-free solders in these environments.

PHYSICAL PROPERTIES AND SURFACE TOPOGRAPHY OF ORTHODONTIC STAINLESS STEEL WIRES : COMPARING A NEW KOREAN PRODUCT WITH OTHERS FROM FOREIGN COMPANIES (여러 스테인레스 스틸 호선의 물성 및 표면의 비교)

  • Lee, Sung-Ho;Kim, Tae-Woo;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.149-157
    • /
    • 2001
  • The purpose of this study was to investigate the property of a new Korean stainless steel wire(Jinsung Ind.) comparing with other foreign Products. Five types of stainless steel wires (Standard, Resilient, HI-T of Unitek, Stainless steel of Ormco and Jinsung Ind.) in 0.016x0.022 and 0.019x0.02 were tested to observe for Composition analysis, size difference, tensile properties, flexure bending property, tortion property, surface hardness and surface topography by means of SEM. The findings suggest that: 1. In maximum tensile strength of tensile properties, Unitek Hi-T showed the greatest value, followed by Unitek Resilient, Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Hi-T showed highest value, followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Resilient, Unitek Standard in 0.019x 0.025. 2. In elongation rate, Unitek Standard showed the greatest value, fellowed by Ormco Stainless Steel, Unitek Hi-T, Unitek Resilient, Jinsung Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the highest value, followed by Unitek Standard, Ormco Stainless Steel, Jinsung Stainless Steel, Unitek Resilient in 0.019x0.025. 3. In modulus of elasticity, Jinsung Stainless Steel showed the greatest value, followed by Unitek Hi-T, Unitek Resilient, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Resilient showed the highest value followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Hi-T, Unitek Standard in 0.019x0.025. 4. In bending fatigue test, Jinsung Stainless Steel showed the greatest fracture resistance, followed by Unitek Hi-T, Unitek Standard, Unitek Resilient, Ormco Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the greatest fracture resistance followed by Jinsung Stainless Steel, Unitek Resilient, Unitek Standard, Ormco Stainless Steel in 0.019x0.025. 5. In twist test, Unitek Resilient showed the greatest fracture resistance, followed by Jinsung Stainless Steel, Unitek Hi-7, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Jinsung showed the greatest fracture resistance, followed by Unitek Resilient, Unitek Standard, Ormco Stainless Steel, Unitek Hi-T. 6. In surface topography, every products showed indentation and pitting. Jinsung stainless steel wire showed long thin indentation and relatively smooth surface. Unitek wires showed indentation and pitting and Ormco wire showed a lot of irregular pittings.

  • PDF

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.