• Title/Summary/Keyword: Pirenzepine

Search Result 32, Processing Time 0.023 seconds

Muscarine $M_2$ Receptor-mediated Presynaptic Inhibition of GABAergic Transmission in Rat Meynert Neurons

  • Jang, Il-Sung;Akaike, Norio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Cholinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) by the activation of muscarine receptors was investigated in mechanically dissociated rat nucleus basalis of the Meynert neurons using the conventional whole-cell patch recording configuration. Muscarine $(10{\mu}M)$ reversibly and concentration-dependently decreased mIPSC frequency without affecting the current amplitude distribution. Muscarine action on GABAergic mIPSCs was completely blocked by $1{\mu}M$ methoctramine, a selective $M_2$ receptor antagonist, but not by $1{\mu}M$ pirenzepine, a selective $M_1$ receptor antagonist. NEM $(10{\mu}M),$ a G-protein uncoupler, attenuated the inhibitory action of muscarine on GABAergic mIPSC frequency. Muscarine still could decrease GABAergic mIPSC frequency even in the $Ca^{2+}-free$ external solution. However, the inhibitory action of muscarine on GABAergic mIPSCs was completely occluded in the presence of forskolin. The results suggest that muscarine acts presynaptically and reduces the probability of spontaneous GABA release, and that such muscarine-induced inhibitory action seems to be mediated by G-protein-coupled $M_2$ receptors, via the reduction of cAMP production. Accordingly, $M_2$ receptor-mediated disinhibition of nBM neurons might play one of important roles in the regulation of cholinergic outputs from nBM neurons as well as the excitability of nBM neurons themselves.

Studies on Secretion of Catecholamine Evoked by Caffeine from the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Lee, Jang-Hee;Kim, Won-Shik;Kim, Soo-Bok;Lee, Eun-Hwa;Lee, Byeong-Joo;Ko, Suk-Tai
    • Archives of Pharmacal Research
    • /
    • v.14 no.1
    • /
    • pp.55-67
    • /
    • 1991
  • The influence of caffeine on secretion of catecholamines (CA) was examined in the isolated perfused rat adrenal gland. Caffeine (0.3 mM) perfused into an adrenal vein of the gland produced a marked increase in secretion of CA. This secretory effect of CA evoked by perfusion of caffeine for one minute was considerably prolonged, lasting for more than 90 minutes. The tachyphylaxis to releasing effect of CA induced by caffeine was observed by repeated perfusion of this drug. The caffeine-evoked CA secretion was markedly inhibited by pretreatment with ouabain, trifluoperazine, TMB-8 and perfusion with calcium-free Krebs solution containing 5 mM EGTA, but was not affected by perfusion of calcium-free Krebs solution without other addition. CA secretion evoked by caffeine was not reduced significantly by pretreatment with chlorisondamine but after the first collection of perfusate for 3 min was clearly inhibited. Interestingly, the caffeine-evoked CA secretion was considerably potentiated by pretreatment with atropine or pirenzepine, but after the first collection for 3 min it was markedly decreased. These experimental results suggest that caffeine causes a marked increase in secretion of CA from the isolated perfused rat adrenal gland by an extracellular calcium-independent exocytotic mechanism. The secretory effect of caffeine may be mainly due to mobilization of calcium from an intracellular calcium pool in the rat chromaffin cells and partly due to stimulation of both muscarinic and nicotinic receptors.

  • PDF

Influence of FCCP on Catecholamine Release in the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Jo, Seong-Ho;Kee, Young-Woo;Lim, Ji-Yeon;Choi, Deok-Ho;Baek, Young-Joo;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.165-174
    • /
    • 2004
  • The aim of the present study was to investigate the effect of FCCP (carbonyl cyanide p-trifluoromethoxyphenyIhydrazone), which is a potent mitochondrial uncoupler, on secretion of catecholamines (CA) from the perfused model of the rat adrenal gland and to establish the mechanism of its action. The perfusion of FCCP (3 ${\times}$ $10^{-5}$ M) into an adrenal vein of for 90 min resulted in great increases in CA secretions. Tachyphylaxis to CA-releasing effect of FCCP was not observed by repeated perfusion of it. The CA-releasing effects of FCCP were depressed by pre-treatment with pirenzepine, chlorisondamine, nicardipine, TMB-8, and the perfusion of EGTA plus $Ca^{2+}$-free medium. In the presence of FCCP (3 ${\times}$ $10^{-5}$ M), the CA secretory responses induced by Ach (5.32 ${\times}$ $10^{-3}$ M), and DMPP ($10^{-4}$ M) were significantly enhanced. Furthermore, the perfusion of CCCP (3 ${\times}$ $10^{-5}$ M), a similar mitochondrial uncoupler, into an adrenal vein for 90 min also caused an increased response in CA secretion. Taken together these experimental results indicate that FCCP causes the CA secretion the perfused rat adrenal medulla in a calcium-dependent fashion. It is suggested that this facilitatory effects of FCCP may be mediated by cholinergic receptor stimulation, which is relevant to both stimulation of the $Ca^{2+}$ influx and $Ca^{2+}$ release from cytoplasmic $Ca^{2+}$ stores.

Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

  • Lee, Ji Hwan;Go, Donghyun;Kim, Woojin;Lee, Giseog;Bae, Hyojeong;Quan, Fu Shi;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water ($4^{\circ}C$) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of $M_2$ (methoctramine, $10{\mu}g$) and $M_3$ (4-DAMP, $10{\mu}g$) receptor antagonist, but not $M_1$ (pirenzepine, $10{\mu}g$) receptor antagonist, blocked the effect. Also, spinal administration of $5-HT_3$ (MDL-72222, $12{\mu}g$) receptor antagonist, but not $5-HT_{1A}$ (NAN-190, $15{\mu}g$) or $5-HT_{2A}$ (ketanserin, $30{\mu}g$) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a significant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic ($M_2$, $M_3$) and serotonergic ($5-HT_3$) receptors.

Excitatory Effect of $M_1$ Muscarinic Acetylcholine Receptor on Automaticity of Mouse Heart

  • Woo Sun-Hee;Lee Byung Ho;Kwon Kwang-Il;Lee Chin Ok
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.930-935
    • /
    • 2005
  • We have investigated the effects of relatively high concentration of carbachol (CCh), an agonist of muscarinic acetylcholine receptor (mAChR), on cardiac automaticity in mouse heart. Action potentials from automatically beating right atria of mice were measured with conventional microelectrodes. When atria were treated with $100{\mu}M$ CCh, atrial beating was immediately arrested and diastolic membrane potential (DMP) was depolarized. After exposure of the atria to CCh for $\~4 min$, action potentials were regenerated. The regenerated action potentials had lower frequency and shorter duration when compared with the control. When atria were pre-exposed to pirenzepine $(1{\mu}M)$, an $M_1$ mAChR antagonist, there was complete inhibition of CCh-induced depolarization of DMP and regeneration of action potentials. Pre-exposure to AFDX-116 (11 ({2-[(diethylamino)-methyl]-1-piperidyl}acetyl)-5, 11-dihydro-6H-pyridol[2,3-b][1,4] benzodiazepine-6-one base, $1{\mu}M$), an $M_2$ mAChR antagonist, failed to block CCh-induced arrest of the beating. However, prolonged exposure to CCh elicited gradual depolarization of DMP and slight acceleration in beating rate. Our data indicate that high concentration of CCh depolarizes membrane potential and recovers right atrial automaticity via $M_1$ mAChR, providing functional evidence for the role of $M_1$ mAChR in the atrial myocytes.

Mechanism of Catecholamine Secretion Evoked by Lithium from the Isolated Perfused Rat Adrenal Gland (흰쥐 적출관류부신에서 리튬에 의한 카테콜아민 분비작용의 기전)

  • Lim, Dong-Yoon;Kim, Cheol;Oh, Hyeong-Geun
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.357-371
    • /
    • 1996
  • Lithium (Li) is known to be used not only during acute manic psychosis but also acute depressive phase in manic-depression. In the present study, it was attempted to investigate the effect of lithium on catecholamine (CA) secretion from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. Replacement of $Na^+$ (118.4 mM) by lithium in the normal Krebs-bicarbonate solution used to perfuse the gland produced gradually an increased response in the spontaneous catecholamine release, which was peaked at $30{\sim}60$ min after its perfusion. Li-Krebs solution was perfused into an adrenal vein for 2 hours in every experiments. Li-Krebs-evoked CA secretory responses were depressed significantly under loading with $Ca^{++}-free$ medium. This CA secretion evoked by lithium loading was also reduced markedly by the pretreatment with nicardipine ($10^{-6}$ M), TMB-8 ($10^{-5}$ M) and chlorisondamine ($10^{-6}$ M) for 20 min, respectively, while was not affected by preloading with a pirenzepine ($2{\times}10^{-6}$ M)-containing Krebs. $Na^+$ pump inhibition by pretreatment with ouabain ($10^{-4}$ M) for 20 min did make the marked depression in Li-evoked CA secretory responses. Moreover, Li-evoked CA release was also diminished markedly by preloading with tetrodotoxin ($5{\times}10^{-7}$ M)-contaming Krebs for 20 min. All these experimental results taken together suggest that lithium enhances CA secretion in a $Ca^{++}$-dependent fashion by its accumulation in the adrenomedullary chromaffin cells of the rat, and that this secretory effect may be meidated by a dual mechanism: (i) chromaffin cell depolarization and subsequent opening of voltage-sensitive $Ca^{++}$ channels and (ii) activation of a $[Li]_i-[Ca]_0$ counter-transport system.

  • PDF

The Mode of Action of Pentazocine on Catecholamine Secretion from the Perfused Rat Adrenal Medulla (흰쥐 관류부신에서 Pentazocine의 카테콜아민 분비작용의 기전)

  • Lim, Dong-Yoon;Kim, Bong-Han;Heo, Jae-Bong;Choi, Cheo-Hee;Kim, Jin-Ho;Jang, Young;Lee, Jae-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.299-311
    • /
    • 1994
  • The present study was attempted to investigate whether pentazocine, which is known to possess both opioid agonistic and antagonistic properties, produces catecholamines (CA) secretion from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, and also to compare its action with that of some opioids. Pentazocine (30 to 300 ug) injected into an adrenal vein caused a dose-dependent secretory response of CA from the rat adrenal medulla. The pentazocine-evoked secretion of CA was remarkably diminished by the preloading with chlorisondamine $(10^{-6}\;M)$, naloxone $(1.22{\times}10^{-7}\;M)$, morphine $(1.7{\times}10^{-5}\;M)$, met-enkephalin $(9.68{\times}10^{-6}\;M)$, nicardipine $(10^{-6}\;M)$ and TMB-8 $(10^{-5}\;M)$ while was not influenced by the pretreatment of pirenzepine $(2{\times}10^{-6}\;M)$. The perfusion of $Ca^{++}$-free Krebs solution for 30 min into the gland also led to the marked reduction in CA secretion evoked by pentazocine. Furthermore, the CA release evoked by ACh and/or DMPP was greatly inhibited by the pretreatment with pentazocine $(1.75{\times}10^{-4}\;M)$ for 20 min. From these experimental results, it is thought that pentazocine causes markedly the increased secretion of CA from the isolated perfused rat adrenal medulla by a calcium-dependent exocytotic mechanism. The secretory effect of pentazocine appears to be mediated through activation of opioid receptors located on adrenal chromaffin cells, which may be also associated with stimulation of cholinergic nicotinic receptors.

  • PDF

Multiple Binding Affinities for Muscarinic Acetylcholine Receptors in Rat Brain (흰쥐 뇌내(腦內)의 무수카린성 콜린 수용체의 이질성(異質性))

  • Lee, Jong-Hwa;El-Fakahany, Esam E.
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.101-111
    • /
    • 1987
  • We investigated the binding properties of $(^3H)$ QNB and $(^3H)$ NMS to mAchR to elucidate the characterstics of mAchR in rat brain by using two different preparations (homogemates & intact brain cell aggregates). The binding properties of both ligands demonstrated high affinity and saturability in both experiments, however $(^3H)$ QNB showed a significantly higher maximal binding capacity than tha ot $(^3H)$ NMS 1. In rat brain homogenates; Displacement of both lignands with several mAchR antagonists resulted in competition curves in accoradnce with the law of massaction for QNB, atropine & scopolamine in thie preparation, also a similar profile was found for the quaternary ammonium analogs of atropine & scopolamine (methyl atropine & methylscopolamine) when $(^3H)$ NMS was used to label the receptors in rat brain. But when these hydrophillic antagonists were used to displace $(^3H)$ QNB, they showed interaction with high- and low-affinity binding sites in brain homogenates. Pirenzepine, the nonclassical mAchR antagonist, was able to displace both ligands from binding sites in this preparation. 2. In intact rat brain cell aggregates; Intact bain cell aggregates were used to elucidate the binding characteristics of $(^3H)$ NMS to mAchR in rat. The magnitude of binding of this ligand was related linearly to the amount of cell protein in the binding assay with a high ratio of total to nonspecific binding. mAchR antagonists displaced specific $(^3H)$ NMS binding according to the law of mass-action, while it was possible to resolve displacement curves using mAchR agonist into high-& low-affinity component. 3. Our results indicate that more hydrophilic receptor ligand $(^3H)$ QNB, displacement experiments in both tissues demonstrated that the lipid solubility of a particulr mAchR ligand might play an important role in determining its profile of binding to the mAchR, and the concentrations of mAchR in rat brain are both on the cell surface (membrane-bound receptor) and in the intracelluar membrane (intermembrane-bound receptor). 4. The results are discussed in terms of the usefulness of dissociated intact rat brain cells in studying mAchR in central nervous system.

  • PDF

Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus (쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구)

  • Ryu, Keun Oh;Seok, Heon
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1103-1109
    • /
    • 2015
  • Cholinergic innervation of the hippocampus is known to be correlated with learning and memory. The cholinergic agonist carbachol (CCh) modulate synaptic plasticity and produced long-term synaptic depression (LTD) in the hippocampus. However, the exact mechanisms by which the cholinergic system modifies synaptic functions in the hippocampus have yet to be determined. This study introduces an acetylcholine receptor-mediated LTD that requires internalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors on the postsynaptic surface and their intracellular mechanism in the hippocampus. In the present study, we showed that the application of the cholinergic agonist CCh reduced the surface expression of GluA2 on synapses and that this reduction was prevented by the M1 muscarinic acetylcholine receptor antagonist pirenzepine in primary hippocampal neurons. The interaction between GluA2 and the glutamate receptor-interacting protein 1 (GRIP1) was disrupted in a hippocampal slice from a rat upon CCh simulation. Under the same conditions, the binding of GluA2 to adaptin-α, a protein involved in clathrin-mediated endocytosis, was enhanced. The current data suggest that the activation of LTD, mediated by the acetylcholine receptor, requires the internalization of the GluA2 subunits of AMPA receptors and that this may be controlled by the disruption of GRIP1 in the PDZ ligand domain of GluA2. Therefore, we can hypothesize that one mechanism underlying the LTD mediated by the M1 mAChR is the internalization of the GluA2 AMPAR subunits from the plasma membrane in the hippocampal cholinergic system.

Functional Properties of Human Muscarinic Receptors Hm1, Hm2 and Hm3 Expressed in a Baculovirus/Sf9 Cell System

  • Woo, Hyun-Ae;Woo, Yae-Bong;Bae, Seung-Jin;Kim, Hwa-Jung
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 1999
  • The human muscarinic acetylcholine receptor (mAChR) subtypes Hml, Hm2 and Hm3 have been expressed in insect cells (Spodoptera frugiperda, Sf9) using the baculovirus expression system. Expression of relevant DNA, transcript and receptor proteins was identified by PCR, Northern blotting and [$^{3}H$]QNB binding, respectively. As assessed by [$^{3}H$]QNB binding sites, yields of muscarinic receptors in membrane preparations in this study were as about 5-20 times high as those in mammalian cells reported in previous studies. The [$^{3}H$]QNB competition binding studies with well-known subtype-selective mAChR antagonists showed that the receptors expressed in Sf9 cells retain the pharmacological characteristics expected for the ml , m2 and m3 muscarinic receptors. The ml-selective antagonist, pirenzepine, displayed a considerably higher affinity for Hml by 110-fold and 35-fold than for Hm2 and Hm3, respectively, The m2-selective methoctramine displayed a significantly higher affinity for Hm2 than for Hml and Hm3 (10- and 26-fold, respectively). p-F-HHSiD exhibited high affinity for Hm3 that is not significantly different from those for Hml, but 66-fold higher than its affinity for Hm2. The functional coupling of the recombinant receptors to second messenger systems was also examined. While both Hml and Hm3 stimulated phosphoinositide hydrolysis upon activation by carba-chol, Hm2 produced no response. On the other hand, activation of mAChRs induced the inhibition of forsko-lin-stimulated cyclic AMP formation in Hm2-expressing cells, whereas the significant dose-dependent increase in or poor response on cyclic AMP formation were produced in Hml or Hm3-expressing cells, respectively. These results indicate the differential coupling of recombinant Hml, Hm2 and Hm3 receptors expressed in SF9 cells to intracellular signalling system.

  • PDF