Browse > Article

Excitatory Effect of $M_1$ Muscarinic Acetylcholine Receptor on Automaticity of Mouse Heart  

Woo Sun-Hee (College of Pharmacy, Chungnam National University)
Lee Byung Ho (Korea Research Institute of Chemical Technology)
Kwon Kwang-Il (College of Pharmacy, Chungnam National University)
Lee Chin Ok (Department of Life Sciences, Pohang University of Science and Technology)
Publication Information
Archives of Pharmacal Research / v.28, no.8, 2005 , pp. 930-935 More about this Journal
Abstract
We have investigated the effects of relatively high concentration of carbachol (CCh), an agonist of muscarinic acetylcholine receptor (mAChR), on cardiac automaticity in mouse heart. Action potentials from automatically beating right atria of mice were measured with conventional microelectrodes. When atria were treated with $100{\mu}M$ CCh, atrial beating was immediately arrested and diastolic membrane potential (DMP) was depolarized. After exposure of the atria to CCh for $\~4 min$, action potentials were regenerated. The regenerated action potentials had lower frequency and shorter duration when compared with the control. When atria were pre-exposed to pirenzepine $(1{\mu}M)$, an $M_1$ mAChR antagonist, there was complete inhibition of CCh-induced depolarization of DMP and regeneration of action potentials. Pre-exposure to AFDX-116 (11 ({2-[(diethylamino)-methyl]-1-piperidyl}acetyl)-5, 11-dihydro-6H-pyridol[2,3-b][1,4] benzodiazepine-6-one base, $1{\mu}M$), an $M_2$ mAChR antagonist, failed to block CCh-induced arrest of the beating. However, prolonged exposure to CCh elicited gradual depolarization of DMP and slight acceleration in beating rate. Our data indicate that high concentration of CCh depolarizes membrane potential and recovers right atrial automaticity via $M_1$ mAChR, providing functional evidence for the role of $M_1$ mAChR in the atrial myocytes.
Keywords
Muscarinic acetylcholine receptor; Automatic action potential; Mouse atrium, Car­bachol;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Brann, M. R., Ellic, J., Jorgensen, H., Hill-Eubanks, D., and Jones, S. V., Muscarinic acetylcholine receptor subtypes: localization and structure/function. Prog. Brain Res., 98, 121- 127 (1993)   DOI
2 Colecraft, H. M., Egamino, J. P., Sharma, V. K., and Sheu, S. S., Signaling mechanisms underlying muscarinic receptormediated increase in contraction rate in cultured heart cells. J. Biol. Chem., 273, 32158-32166 (1998)   DOI   ScienceOn
3 Gallo, M. P., Alloatti, G., Eva, C., Oberto, A., and Levi, R. C., $M_1$ muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J. Physiol (Lond.)., 471, 41-60 (1993)   DOI
4 Levy, M. N. and Martin, P., Parasympathetic control of the heart, In Randall, W.C. (Eds.). Nerve Control of Cardiovascular Function. Oxford Univ. Press, New York, pp. 68, (1984)
5 Watson, M., Yamamura, H. I., and Roeske, W. R., A unique regulatory profile and regional distribution of [$3^H$] pirenzepine binding in the rat provide evidence for distinct $m_1$ and $m_2$ muscarinic receptor subtypes. Life Sci., 32, 3001-3010 (1983)   DOI   ScienceOn
6 Cho, H., Nam, G. B., Lee, S. H., Earm, Y. E., and Ho, W. K., Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in ${\alpha}_1$-adrenergic pathway via the modulation of acetylcholine-activated $K^{+}$ channels in mouse atrial myocytes. J. Biol. Chem., 276, 159-164 (2001)   DOI   ScienceOn
7 Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N., and Jan, L. Y., Primary structure and functional expression of a rat Gprotein- coupling muscarinic potassium channel. Nature, 364, 802-806 (1993)   DOI   ScienceOn
8 Kohl, C., Schmitz, W., and Scholz, H., Positive inotropic effects of carbachol and inositol phosphate levels in mammalian atria after treatment with pertussis toxin. J. Pharmacol. Exp. Ther., 254, 894-899 (1990)
9 Jaconi, M., Bony, C., Richards, S. M., Terzic, A., Arnaudeau, S., Vassort, G., and Puceat, M., Inositol 1,4,5-trisphosphate directs $Ca^{2+}$ flow between mitochondria and the endoplasmic/ sarcoplasmic reticulum: a role in regulating cardiac autonomic $Ca^{2+}$ spiking. Mol. Biol. Cell, 11, 1845-1858 (2000)   DOI
10 Islam, M. A., Nojima, H., and Kimura, I., Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. Er. J. Pharmacol., 436, 227-236 (1998)   DOI   PUBMED   ScienceOn
11 Cho, H., Hwang, J. Y., Kim, D., Shin, H. S., Kim, Y., Earm, Y. E., and HO, W. K., Acetylcholine-induced phosphatidylinositol 4,5-bisphosphate depletion does not cause short-term desensitization of G-protein-gated inwardly rectifying $K^{+}$ current in mouse atrial myocytes. J. Biol. Chem., 277, 27742- 27747 (2002)   DOI   ScienceOn
12 Hardouin, S. N., Richmond, K. N., Zimmerman, A., Hamilton, S. E., Feigl, E. O., and Nathanson, N. M., Altered cardiovascular responses in mice lacking the $M_1$ muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther., 301, 129-137 (2002)   DOI   ScienceOn
13 Hartzell, H. C., Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog. Biophys. Mol. Biol., 52, 165-247 (1988)   DOI   PUBMED   ScienceOn
14 Toda, N. and West, T. C., Changes in sino-atrial node transmembrane potentials on vagal stimulation of the isolated rabbit atrium. Nature, 205, 808-811 (1965)   DOI
15 Gilmour, R. F. and Zipes, D. P., Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers. Am. J. Physiol., 249, H735-H740 (1985)
16 Meyer, T., Wellner-Kienitz, M. C., Biewald, A., Bender, K., Eickel, A., and Pott, L., Depletion of phosphatidylinositol 4,5- bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier $K^{+}$ current in atrial myocytes. J. Biol. Chem., 276, 5650-5658 (2001)   DOI   ScienceOn
17 Korth, M. and Kühlkamp, V., Muscarinic receptor-mediated increase of intracellular $Na^{+}$ ion activity and force of contraction. Pflugers Arch., 403, 266-272 (1985)   DOI   ScienceOn
18 Shi, H., Wang, H., and Wang, Z., Identification and characterization of multiple subtypes of muscarinic acetylcholine receptors and their physiological functions in canine hearts. J. Pharmacol. Exp. Ther., 55, 497-507 (1999)
19 Sharma, V. K., Colecraft, H. M., Wang, D. X., Levey, A. I., Grigorenko, E. V., Yeh, H. H., and Sheu, S. S., Molecular and functional identification of $m_1$ muscarinic acethylcholine receptors in rat ventricular myocytes. Circ. Res., 79, 86-93 (1996)   DOI   ScienceOn
20 Caulfield, M. P., Muscarinic receptors characterization, coupling and function. Pharmacol. Ther., 58, 319-379 (1993)   DOI   PUBMED   ScienceOn
21 Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G., and Shin, H. S., Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature, 389, 290-293 (1997)   DOI   ScienceOn
22 Schimerlik, M. I., Structure and regulation of muscarinic receptors. Annu. Rev. Physiol., 51, 217-227 (1989)   DOI   PUBMED   ScienceOn
23 Wang, H., Han, H., Zhang, L., Shi, H., Schram, G., Nattel, S., and Wang, Z., Expression of multiple multiple subtypes of muscarinic receptors and cellular distribution in the human heart. Mol. Pharmacol., 59, 1029-1036 (2001)   DOI
24 Pappano, A. J., Vagal stimulation of the heartbeat: muscarinic receptor hypothesis. J. Cardiovasc. Electrophysiol., 2, 262- 273 (1991)   DOI
25 Del Castillo, J. and Katz, B., Production of membrane potential changes in the frog's heart by inhibition nerve impulses. Nature, 175, 1035 (1995)   DOI   ScienceOn
26 Hosey, M. M., Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J., 6, 845-852 (1992)   DOI