Browse > Article

Influence of FCCP on Catecholamine Release in the Rat Adrenal Medulla  

Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
Jo, Seong-Ho (Department of Pharmacology, College of Medicine, Chosun University)
Kee, Young-Woo (Department of Pharmacology, College of Medicine, Chosun University)
Lim, Ji-Yeon (Department of Pharmacology, College of Medicine, Chosun University)
Choi, Deok-Ho (Department of Pharmacology, College of Medicine, Chosun University)
Baek, Young-Joo (Department of Pharmacology, College of Medicine, Chosun University)
Hong, Soon-Pyo (Department of Internal Medicine (Cardiology), Chosun University)
Publication Information
Biomolecules & Therapeutics / v.12, no.3, 2004 , pp. 165-174 More about this Journal
Abstract
The aim of the present study was to investigate the effect of FCCP (carbonyl cyanide p-trifluoromethoxyphenyIhydrazone), which is a potent mitochondrial uncoupler, on secretion of catecholamines (CA) from the perfused model of the rat adrenal gland and to establish the mechanism of its action. The perfusion of FCCP (3 ${\times}$ $10^{-5}$ M) into an adrenal vein of for 90 min resulted in great increases in CA secretions. Tachyphylaxis to CA-releasing effect of FCCP was not observed by repeated perfusion of it. The CA-releasing effects of FCCP were depressed by pre-treatment with pirenzepine, chlorisondamine, nicardipine, TMB-8, and the perfusion of EGTA plus $Ca^{2+}$-free medium. In the presence of FCCP (3 ${\times}$ $10^{-5}$ M), the CA secretory responses induced by Ach (5.32 ${\times}$ $10^{-3}$ M), and DMPP ($10^{-4}$ M) were significantly enhanced. Furthermore, the perfusion of CCCP (3 ${\times}$ $10^{-5}$ M), a similar mitochondrial uncoupler, into an adrenal vein for 90 min also caused an increased response in CA secretion. Taken together these experimental results indicate that FCCP causes the CA secretion the perfused rat adrenal medulla in a calcium-dependent fashion. It is suggested that this facilitatory effects of FCCP may be mediated by cholinergic receptor stimulation, which is relevant to both stimulation of the $Ca^{2+}$ influx and $Ca^{2+}$ release from cytoplasmic $Ca^{2+}$ stores.
Keywords
FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone); catecholamine secretion; cholinergic receptor stimulation; adrenal Medulla;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of CAs. J. Pharmacol. Exp. Ther. 138, 360-375
2 Baker, P. F. and Knight, D. E. (1978). Calcium-dependent exocytosis in bovine adrenal meduallary cells with leaky plasma membrane. Nature 276, 620-622.   DOI   ScienceOn
3 Biscoe, T. J. and Duchen, M. R. (1989). Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide. J. Physiol. 413, 447-468   DOI
4 Bodding, M. (2001) Histamine-induced $Ca^2^+$ release in bovine adrenal chromaffin cells. Naunyn Schmiedebergs Arch. Pharmacal. 364, 508-515
5 Buckler, K. J. and Vaughan-Jones, R. D. (1994a). Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J. Physiol. 478, 157-171   DOI
6 Buckler, K. J. and Vaughan-Jones, R. D. (1994b). Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J. Physiol. 476, 423-428   DOI
7 Buckler, K. J. and Vaughan-Jones, R. D. (1998). Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J. Physiol. 513, 819-833   DOI   ScienceOn
8 Chiou, C.Y. and Malagodi, M.H. (1975). Studies on the mechanism of action of a new antagonist (N,N-diethylamino-octy1,3,4,5- trimethoxybenzoate hydrochloride in smooth and skeletal muscles. Br. J. Pharmacol. 53,279-285   DOI   ScienceOn
9 Doods, H. N., Mathy, M. J., Davidesko, D., Van Charldorp , K. J., De Jonge, A. and Van Xwieten, P. A. (1987). Selectivity of muscarinic agonists in radioligand and in vivo experiments for the putative $M_1$ , $M_2$ and $M_3$ receptors. J. Pharmacol. Exp. Ther. 242, 257-262
10 Douglas, W.W. (1968). Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34,451-474   DOI
11 Duchen, M. R and Biscoe, T. J. (1992). Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J. Physiol. 450, 33-61   DOI
12 Duchen, M. R, Valdeolmillos, M., O'Neill, S. C. and Eisner, D. A. (1990). Effects of metabolic blockade on the regulation of intracellular calcium in dissociated mouse sensory neurons. J. Physiol. (Land) 424, 411-426   DOI
13 Eglen, R. M. and Whiting, R. L. (1986). Muscarinic receptor subtypes: A critique of the current classification and a proposal for a working nomenclature. J. Auton. Pharmacol. 5,323-346
14 Fujiwara, N., Higashi, H., Shimoji, K. and Yoshimura, M. (1987). Effects of hypoxia on rat hippocampal neurones in vitro. J. Physiol. (Land) 384, 131-151   DOI
15 Gonzalez, C., Almaraz, L., Obeso, A. and Rigual, R.(1994). Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol. Rev. 74, 829-898   DOI
16 Gunter, T. E., Gunter, K. K, Sheu, S. S. and Gavin, C. E. (1994). Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267, C313-C339   DOI
17 Kilpatrick, D. L., Slepetis, R. and Kirshner, N. (1981). Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245-1255   DOI
18 Inoue, M., Fujishiro, N. and Imanaga, I. (1999). Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J. Physiol. 519, 385-396   DOI   ScienceOn
19 Juthberg, S. K and Brismar, T. (1997). Effect of metabolic inhibitors on membrane potential and ion conductance of rat astrocytes. Cell Mol. Neurobiol. 17, 367-377   DOI   ScienceOn
20 Kilpatrick, D. L., Slepetis, R. J., Corcoran. J. J. and Jirshner, N. (1982). Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427-435   DOI
21 Knight, D. E. and Kesteven, N. T. (1983). Evoked transient intracellular free $Ca^2^+$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R Soc. Land. B 218, 177-199.   DOI
22 Cuchillo-Ibanez, I., Olivares, R., Aldea, M., Villarroya, M., Arroyo, G., Fuentealba, J., Garcia, A.G. and Albillos, A. (2002). Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed. Pflugers Arch. 444, 133-142   DOI   ScienceOn
23 Dixon, W. R., Garcia, A. G., and Kirkekar, S. M. (1975). Release of catecholamines and dopamine-$\beta$-hydroxylase from the rat adrenal gland of the cat. J. Physial. 244, 805-824   DOI
24 Heytier, P. G. (1979). Uncouplers of oxidative phosphorylation. Methods Enzymol. 55, 462-72   DOI
25 Hyllienmark, L. and Brismar, T. (1996). Effect of metabolic inhibition on $K^+$ channels in pyramidal cells of the hippocampal CAl region in rat brain slices. J. Physiol. (Land) 496,155-164   DOI
26 Nakazato, Y., Ohga, A., Oleshansky, M., Tomita, U. and Yamada, Y. (1988). Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br. J. Pharmacol. 93, 101-109   DOI   ScienceOn
27 Mizobe, F. and Livett, B. G. (1983). Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J. Neurochem. 3(4), 87-876
28 Montero, M., Alonso, M. T., Albillos, A., Cuchillo-Ibanez, I., Olivares, R, Garcia, A., Garcia-Sancho, J. and Alvarez, J. (2001). Control of secretion by mitochondria depends on the size of the local $[Ca^2^+]$ after chromaffin cell stimulation. Eur. J. Neurosci. 13, 2247-2254   DOI   ScienceOn
29 Murai, Y., Ishibashi, H., Koyama, S. and Akaike, N. (1997). $Ca^2^+$-activated $K^+$ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia. J. Neurophysiol. 78, 2674-2681   DOI
30 Nowicky, A. V. and Duchen, M. R (1998). Changes in $[Ca^2^+]_i$ and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J. Physiol. (Land) 507, 131-145   DOI   ScienceOn
31 Rocher, A., Obeso, A., Gonzalez, C. and Herreros, B. (1991). Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J. Physiol. 433, 533-548   DOI
32 Hammer, R., Verrie, C. P., Birdsall, N. J. M., Brugen, A. S. N. and Hulme, E. C. (1980). Pirenzepine distinguishes between subclasses of muscarinic receptors. Nature 283, 90-92   DOI   ScienceOn
33 Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci. 31, 2991-2998   DOI   ScienceOn
34 Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. R. and Gilman, A. G. (2001). Goodman & Gilman's Pharmacological Basis of Therapeutics. 9th Ed. McGrraw-Hill, pp.193-195
35 Taylor, S. C. and Peers, C. (1998). Hypoxia evokes catecholamine secretion from rat pheochromocytonla PCI2 cells. Biochem. Biophys. Res Comm. 248, 13-17   DOI   ScienceOn
36 Smith, P. A., Proks, P. and Moorhouse, A. (1999). Direct effects of tolbutamide on mitochondrial function, intracellular Ca2+ and exocytosis in pancreatic beta-cells. Pflugers Arch. 437, 577-588   DOI   ScienceOn
37 Suh, S. H., Droogmans, G. and Nilius, B. (2000). Effects of cyanide and deoxyglucose on $Ca^2^+$ signalling in macrovascular endothelial cells. Endothelium 7, 155-168   DOI
38 Tallarida, R J. and Murray, R. E. (1987). Mannual ofpharmacologic calculations with computer programs. 2nd ed Springer, Verlag, New York, pp. 132
39 Taylor, S. C., Roberts, M. L. and Peers, C. (1999a). Acid-evoked quantal catecholamine secretion from rat pheochromocytoma cells and its interaction with hypoxia-evoked secretion. J. Physiol. 519, 765-774   DOI   ScienceOn
40 Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480   DOI
41 Krause, E., Englert, H. and Gogelein, H. (1995). Adenosine triphosphate- dependent K currents activated by metabolic inhibition in rat ventricular myocytes differ from those elicited by the channel opener rilmakalim. Pfliigers Arch. 429, 625-635   DOI   ScienceOn
42 Lim, D.Y. and Hwang, D.H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67
43 Misbahuddin, M., Isosaki, M., Houchi, H. and Oka, M. (1985). Muscarinic receptor-mediated increase in cytoplasmic free $Ca^2^+$ in isolated bovine adrenal medullary cells. Effects of TMB-8 and phorbor ester TPA. FEBS Lett.190, 25-28   DOI   ScienceOn
44 Sasakawa, N., Yamamoto, S., Ishii K. and Kato, R. (1984). Inhibition of calcium uptake and catecholamine release by 8-(N, N-dietylamino)-octyl-3,4,5 -trimethoxy benzoate hydrochloride (TMB-8) in cultured bovine adrenal chromaffin cells. Biochem. Phamacol. 33, 4093-4067
45 Yuan, X. J., Sugiyama, T., Goldman, W. F., Rubin, L. J. and Blaustein, M. P. (1966). A mitochondrial uncoupler increases $K_C_a$ currents but decreases $K_V$ currents in pulmonary artery myocytes. Am. J. Physiol. 270, C321-C331
46 Zhu, W. H., Conforti, L., Czyzyk-Krzeska, M. F. and Millhom, D. E. (1996). Membrane depolarization in PC12 cells during hypoxia is regulated by an O2-sensitive $K^+$ current. Am. J. Physiol. 271, C658-C665   DOI
47 Rounds, S. and McMurtry, I.F. (1981). Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ. Res. 48, 393-400   DOI   ScienceOn
48 Sato, M. (1997). Effects of the removal of extracellular $Ca^2^+$ on $[Ca^2^+]_i$ responses to FCCP and acetate in carotid body glomus cells of adult rabbits. Brain Res. 768, 37-42   DOI   ScienceOn
49 Schulz, I. and Stolze, H. H. (1980). The exocrine pancreas: The role of secretagogues cyclic nucleotides and calcium in enzyme secretion. Ann. Rev. Physiol. 42, 127-156   DOI   ScienceOn
50 Wakade, A. R. and Wakade, T. D. (1983). Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10, 973-978   DOI   ScienceOn
51 Williams, J. A. (1980). Regulation of pancreatic acinal cell function by intracellular calcium. Science 177, 1104-1105   DOI   ScienceOn
52 Yamada, Y., Teraoka, H., Nakazato, Y. and Ohga, A. (1988). Intracellular $Ca^2^+$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular $Ca^2^+$ . Neuroscience Lett. 90, 338-342   DOI   ScienceOn
53 Yokota, K., Yanagihara, N., Izumi, F. and Wada, A. (1988). Effects of protonophores on the synthesis of catecholamines and the intracellular pH in cultured bovine adrenal medullary cells. J. Neurochem. 51, 246-251   DOI