Excitatory Effect of $M_1$ Muscarinic Acetylcholine Receptor on Automaticity of Mouse Heart

  • Woo Sun-Hee (College of Pharmacy, Chungnam National University) ;
  • Lee Byung Ho (Korea Research Institute of Chemical Technology) ;
  • Kwon Kwang-Il (College of Pharmacy, Chungnam National University) ;
  • Lee Chin Ok (Department of Life Sciences, Pohang University of Science and Technology)
  • Published : 2005.08.01

Abstract

We have investigated the effects of relatively high concentration of carbachol (CCh), an agonist of muscarinic acetylcholine receptor (mAChR), on cardiac automaticity in mouse heart. Action potentials from automatically beating right atria of mice were measured with conventional microelectrodes. When atria were treated with $100{\mu}M$ CCh, atrial beating was immediately arrested and diastolic membrane potential (DMP) was depolarized. After exposure of the atria to CCh for $\~4 min$, action potentials were regenerated. The regenerated action potentials had lower frequency and shorter duration when compared with the control. When atria were pre-exposed to pirenzepine $(1{\mu}M)$, an $M_1$ mAChR antagonist, there was complete inhibition of CCh-induced depolarization of DMP and regeneration of action potentials. Pre-exposure to AFDX-116 (11 ({2-[(diethylamino)-methyl]-1-piperidyl}acetyl)-5, 11-dihydro-6H-pyridol[2,3-b][1,4] benzodiazepine-6-one base, $1{\mu}M$), an $M_2$ mAChR antagonist, failed to block CCh-induced arrest of the beating. However, prolonged exposure to CCh elicited gradual depolarization of DMP and slight acceleration in beating rate. Our data indicate that high concentration of CCh depolarizes membrane potential and recovers right atrial automaticity via $M_1$ mAChR, providing functional evidence for the role of $M_1$ mAChR in the atrial myocytes.

Keywords

References

  1. Brann, M. R., Ellic, J., Jorgensen, H., Hill-Eubanks, D., and Jones, S. V., Muscarinic acetylcholine receptor subtypes: localization and structure/function. Prog. Brain Res., 98, 121- 127 (1993) https://doi.org/10.1016/S0079-6123(08)62388-2
  2. Caulfield, M. P., Muscarinic receptors characterization, coupling and function. Pharmacol. Ther., 58, 319-379 (1993) https://doi.org/10.1016/0163-7258(93)90027-B
  3. Cho, H., Nam, G. B., Lee, S. H., Earm, Y. E., and Ho, W. K., Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in ${\alpha}_1$-adrenergic pathway via the modulation of acetylcholine-activated $K^{+}$ channels in mouse atrial myocytes. J. Biol. Chem., 276, 159-164 (2001) https://doi.org/10.1074/jbc.M004826200
  4. Cho, H., Hwang, J. Y., Kim, D., Shin, H. S., Kim, Y., Earm, Y. E., and HO, W. K., Acetylcholine-induced phosphatidylinositol 4,5-bisphosphate depletion does not cause short-term desensitization of G-protein-gated inwardly rectifying $K^{+}$ current in mouse atrial myocytes. J. Biol. Chem., 277, 27742- 27747 (2002) https://doi.org/10.1074/jbc.M203660200
  5. Colecraft, H. M., Egamino, J. P., Sharma, V. K., and Sheu, S. S., Signaling mechanisms underlying muscarinic receptormediated increase in contraction rate in cultured heart cells. J. Biol. Chem., 273, 32158-32166 (1998) https://doi.org/10.1074/jbc.273.48.32158
  6. Del Castillo, J. and Katz, B., Production of membrane potential changes in the frog's heart by inhibition nerve impulses. Nature, 175, 1035 (1995) https://doi.org/10.1038/175995a0
  7. Gallo, M. P., Alloatti, G., Eva, C., Oberto, A., and Levi, R. C., $M_1$ muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J. Physiol (Lond.)., 471, 41-60 (1993) https://doi.org/10.1113/jphysiol.1993.sp019890
  8. Gilmour, R. F. and Zipes, D. P., Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers. Am. J. Physiol., 249, H735-H740 (1985)
  9. Hardouin, S. N., Richmond, K. N., Zimmerman, A., Hamilton, S. E., Feigl, E. O., and Nathanson, N. M., Altered cardiovascular responses in mice lacking the $M_1$ muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther., 301, 129-137 (2002) https://doi.org/10.1124/jpet.301.1.129
  10. Hartzell, H. C., Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog. Biophys. Mol. Biol., 52, 165-247 (1988) https://doi.org/10.1016/0079-6107(88)90014-4
  11. Hosey, M. M., Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J., 6, 845-852 (1992) https://doi.org/10.1096/fasebj.6.3.1740234
  12. Islam, M. A., Nojima, H., and Kimura, I., Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. Er. J. Pharmacol., 436, 227-236 (1998) https://doi.org/10.1016/S0014-2999(98)00055-7
  13. Jaconi, M., Bony, C., Richards, S. M., Terzic, A., Arnaudeau, S., Vassort, G., and Puceat, M., Inositol 1,4,5-trisphosphate directs $Ca^{2+}$ flow between mitochondria and the endoplasmic/ sarcoplasmic reticulum: a role in regulating cardiac autonomic $Ca^{2+}$ spiking. Mol. Biol. Cell, 11, 1845-1858 (2000) https://doi.org/10.1091/mbc.11.5.1845
  14. Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G., and Shin, H. S., Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature, 389, 290-293 (1997) https://doi.org/10.1038/38508
  15. Kohl, C., Schmitz, W., and Scholz, H., Positive inotropic effects of carbachol and inositol phosphate levels in mammalian atria after treatment with pertussis toxin. J. Pharmacol. Exp. Ther., 254, 894-899 (1990)
  16. Korth, M. and Kühlkamp, V., Muscarinic receptor-mediated increase of intracellular $Na^{+}$ ion activity and force of contraction. Pflugers Arch., 403, 266-272 (1985) https://doi.org/10.1007/BF00583598
  17. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N., and Jan, L. Y., Primary structure and functional expression of a rat Gprotein- coupling muscarinic potassium channel. Nature, 364, 802-806 (1993) https://doi.org/10.1038/364802a0
  18. Levy, M. N. and Martin, P., Parasympathetic control of the heart, In Randall, W.C. (Eds.). Nerve Control of Cardiovascular Function. Oxford Univ. Press, New York, pp. 68, (1984)
  19. Meyer, T., Wellner-Kienitz, M. C., Biewald, A., Bender, K., Eickel, A., and Pott, L., Depletion of phosphatidylinositol 4,5- bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier $K^{+}$ current in atrial myocytes. J. Biol. Chem., 276, 5650-5658 (2001) https://doi.org/10.1074/jbc.M009179200
  20. Pappano, A. J., Vagal stimulation of the heartbeat: muscarinic receptor hypothesis. J. Cardiovasc. Electrophysiol., 2, 262- 273 (1991) https://doi.org/10.1111/j.1540-8167.1991.tb01324.x
  21. Schimerlik, M. I., Structure and regulation of muscarinic receptors. Annu. Rev. Physiol., 51, 217-227 (1989) https://doi.org/10.1146/annurev.ph.51.030189.001245
  22. Sharma, V. K., Colecraft, H. M., Wang, D. X., Levey, A. I., Grigorenko, E. V., Yeh, H. H., and Sheu, S. S., Molecular and functional identification of $m_1$ muscarinic acethylcholine receptors in rat ventricular myocytes. Circ. Res., 79, 86-93 (1996) https://doi.org/10.1161/01.RES.79.1.86
  23. Shi, H., Wang, H., and Wang, Z., Identification and characterization of multiple subtypes of muscarinic acetylcholine receptors and their physiological functions in canine hearts. J. Pharmacol. Exp. Ther., 55, 497-507 (1999)
  24. Toda, N. and West, T. C., Changes in sino-atrial node transmembrane potentials on vagal stimulation of the isolated rabbit atrium. Nature, 205, 808-811 (1965) https://doi.org/10.1038/205808a0
  25. Wang, H., Han, H., Zhang, L., Shi, H., Schram, G., Nattel, S., and Wang, Z., Expression of multiple multiple subtypes of muscarinic receptors and cellular distribution in the human heart. Mol. Pharmacol., 59, 1029-1036 (2001) https://doi.org/10.1124/mol.59.5.1029
  26. Watson, M., Yamamura, H. I., and Roeske, W. R., A unique regulatory profile and regional distribution of [$3^H$] pirenzepine binding in the rat provide evidence for distinct $m_1$ and $m_2$ muscarinic receptor subtypes. Life Sci., 32, 3001-3010 (1983) https://doi.org/10.1016/0024-3205(83)90652-5