• Title/Summary/Keyword: Piping material

검색결과 232건 처리시간 0.026초

350A 벨로우즈형 신축관이음의 내진특성 평가 (Seismic Stability Evaluation of Bellows Type Expansion Joints Piping System(350A))

  • 손인수
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.653-659
    • /
    • 2020
  • In this study, seismic verification of the bellows used in the plant field was conducted. The pressure used in the analysis was analyzed by applying the design pressure of 15.7bar. For the seismic analysis, the natural frequency of the bellows system was obtained and the stability of the system was evaluated by static seismic analysis comparing the lowest order natural frequency with the dominant frequency of 33 Hz. The material of the bellows system is STS304, and the safety factor is obtained in comparison with the allowable stress. For the seismic analysis, the design response spectrum was prepared and the maximum acceleration was applied to the static seismic analysis and the stability of the entire system was confirmed. Compared to the structural analysis results, the maximum stress of the bellows system increased by about 16.4% and the maximum strain increased by about 3 times when seismic analysis was performed.

Computational mechanics and optimization-based prediction of grain orientation in anisotropic media using ultrasonic response

  • Kim, Munsung;Moon, Seongin;Kang, To;Kim, Kyongmo;Song, Sung-Jin;Suh, Myungwon;Suhr, Jonghwan
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1846-1857
    • /
    • 2021
  • Ultrasonic nondestructive testing is important for monitoring the structural integrity of dissimilar metal welds (DMWs) in pressure vessels and piping in nuclear power plants. However, there is a low probability of crack detection via inspection of DMWs using ultrasonic waves because the grain structures (grain orientations) of the weld area cause distortion and splitting of ultrasonic beams propagating in anisotropic media. To overcome this issue, the grain orientation should be known, and a precise ultrasonic wave simulation technique in anisotropic media is required to model the distortion and splitting of the waves accurately. In this study, a method for nondestructive prediction of the DMW grain orientations is presented for accurate simulation of ultrasonic wave propagation behavior in the weld area. The ultrasonic wave propagation behavior in anisotropic media is simulated via finite-element analysis when ultrasonic waves propagate in a transversely isotropic material. In addition, a methodology to predict the DMW grain orientation is proposed that employs a simulation technique for ultrasonic wave propagation behavior calculation and an optimization technique. The simulated ultrasonic wave behaviors with the grain orientations predicted via the proposed method demonstrate its usefulness. Moreover, the method can be used to determine the focal law in DMWs.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

태양광 패널 설치를 고려한 건축 디자인 지침 개발 연구 (A Study on the Building Design Guideline Development Considering Photovoltaic Panel Installation)

  • 문창호
    • 대한건축학회연합논문집
    • /
    • 제21권4호
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to propose the building design guideline considering photovoltaic panel installation through the analysis of relevant guidelines from home and abroad in terms of building design and solar panel installation. Conclusions can be summarized as followings; Considerations in building design : selection of the site with high solar accessibility, avoidance of the shade from the adjacent building & trees, south facing orientation of solar panel in building design, removal of shade on the solar panel from the part of building itself, load consideration of solar panel & fixing materials, safe passage securement for solar system maintenance, and planning of piping and mechanical room for solar system. Considerations in solar panel installation : harmonizing of solar panel with surrounding environment, unity of solar panel orientation & slope, regular maintenance of solar system, (in case of flat roof installation) solar panel installation afloat over the roof, installation area within the roof floor, and lower than parapet height, (in case of sloped roof installation) solar panel installation parallel with the roof slope, ventilation space securement below the panel, installation area within the roof surface, and similar material installation in empty space.

IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가 (Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank)

  • 박희우;박진성;조종래
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

Effects of composite and metallic patch on the limit load of pressurized steel pipes elbow with internal defects under opening bending moment

  • Chaaben Arroussi;Azzedine Belalia;Mohammed Hadj Meliani
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.221-242
    • /
    • 2023
  • Internal and external corrosion are common in pressure pipes used in a variety of industries, often resulting in defects that compromise their integrity. This economically and industrially significant problem calls for both preventive and curative technical solutions to guarantee the reliability of these structures. With this in mind, our study focuses on the influence of composite and metallic patch repairs on the limit loads of pipes, particularly elbows, the critical component of piping systems. To this end, we used the nonlinear extended finite element method (X-FEM) to study elbows, a priori corroded on the internal surface of the extrados section, then repaired with composite and metallic patches. In addition, the effect of the geometry of composite materials and metal patches was examined, in particular the effect of their thickness and material on the increase in limit loads of repaired structures. The results obtained provide information on the effectiveness and optimization of patch repair of corroded elbows, with the aim of increasing their service life.

Investigation on high gradient magnetic separation for CRUD material in nuclear reactor

  • Shigehiro Nishijima;Naoki Nomura;Fumihito Mishima;Tomokazu Sekine
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제26권3호
    • /
    • pp.5-8
    • /
    • 2024
  • In this study, we investigated high-gradient magnetic separation as a method for separating crud in high-temperature, high-pressure water inside a nuclear reactor. Corrosion products in the coolant circulate through the system and attach to the reactor core, where they are activated by neutron irradiation. The activated corrosion products then desorb from the core and circulate through the cooling system again. The corrosion product in the reactor water or piping system is called crud. Crud is the main source of radiation exposure for radiation workers. Removal and recovery of crud is important in decommissioning plants that have been in operation for service life, and new technologies are also desired. A method for separating activated ions adsorbed on ion exchange resins in nuclear reactors using magnetic separation is developed. In this method, the ion exchange resin is washed with acid, the activated ions are adsorbed from the washing water using adsorbents, and then separated magnetically. Rudimentary experiments were conducted to investigate the possibility of this method.

S/R 밸브에서 격막의 곡률반경과 재료가 밸브 개구시간에 미치는 영향 (The Effect of Curvature Radius and Material of Diaphragm on the Valve Opening Time in Diaphragm Type S/R Valve)

  • 전흥균;황재군;조태석;권영두;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2961-2966
    • /
    • 2007
  • When the pressure at the weak spot established at a certain part of a high pressure vessel or piping system exceeds a design pressure, this weak spot is burst, and the pressurized gas emitted through the weak spot will cause a compression wave system. In this connection, in the present study, an experimental study by using a conventional shock tube facility is performed to estimate the effects of the material of diaphragm, curvature radius and thickness of materials on the valve opening time in diaphragm. Pressure sensor having 500kHz in natural frequency is installed at 35mm downstream of the rupture diaphragm to measure the static pressure history of propagating and being accumulated compression wave. 4 kinds of materials are used as diaphragm that is aluminium, copper, stainless steel and zinc. The diaphragm radii of curvature R are ${\infty}$, 120mm and 60, respectively. And the depth for $90^{\circ}$ groove is 0.04mm. It is found that the smaller the tensile strength and elongation of the rupture diaphragm is, the smaller the radius of curvature of the rupture diaphragm is, and for the same conditions the thinner the thickness of the rupture diaphragm is, the shorter the valve opening time becomes. Also, the tensile strength, elongation and the radius of curvature of the rupture diaphragm for the same conditions are smaller, the maximum pressure rise caused by the coalescences of the compression wave is smaller. Finally the pressure ratio is higher, the valve opening time is shortened and gradient of pressure increment is more steepen.

  • PDF

굽힘각도를 고려한 원형 감육이 발생한 중수로 피더관의 한계하중 (Limit Loads for Circular Wall-Thinned Feeder Pipes Considering Bend Angle)

  • 배경동;제진호;김종성;김윤재
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.313-318
    • /
    • 2012
  • 캐나다형 중수로에서 피더관은 중수로 압력관에 중수를 공급하고 가열된 중수를 증기발생기로 보내는 배관으로 가동 중에 유동 가속 부식현상에 의해 감육이 발생한다. 배관에 감육이 발생하게 되면 배관의 건정성이 떨어진다는 결과는 앞선 연구에서 확인하였다. 본 논문에서는 45 도와 60 도의 굽힘각도를 갖는 피더관의 한계하중을 제시하고 제시된 연구결과를 바탕으로 임의의 굽힘각도를 갖는 피더관에서 감육이 발생했을 경우의 한계하중을 예측 할 수 있는 식을 제시하였다. 본 연구에서는 유한요소 해석을 통하여 굽힘 하중과 내압을 받는 경우에 대하여 연구를 진행하였고 특히 굽힘 하중의 경우 면내 열림 방향과 면내 닫힘 방향으로 나누어 진행하였다. 재료는 대변형 효과를 고려하고 탄성-완전소성 재료로 가정하였다.

고온 증기 파이프의 잔여수명 평가 (Remaining Life Assessment of High Temperature Steam Piping)

  • 윤기봉
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.12-24
    • /
    • 1995
  • 최근에 국내 화력발전설비도 사용 기간이 30년을 넘게 됨에 따라, 고온설비의 경년열화도 평가 및 수명예측 기술에 대한 연구가 활발해지고 있다. 본 논문에서는 l965년부터 사용되어 노 후된 영월화력발전소 2호기의 주증기 파이프를 대상으로 실시한 열화도 및 수명평가 결과를 보고하였다. 주증기관의 취약부인 맞대기 용접부, 지류 용접부, Y부 및 T부 등의 용접부에 대해 표면복제법, 경도측정법을 사용하여 수명평가를 실시하였으며, 비파괴 검사에 의해 균열이 탐지된 경우에는 수명평가 컴퓨터 코드를 사용하여 균열성장에 의한 잔여수명을 계산하였다. 또한 파이프 모재의 잔여 수명은 해석적 방법에 의해 정량적으로 잔여수명을 계산한 후, 외경 패출량 측정, 입계부식법 등에 의해 재질 열화도를 정성적으로 평가하였다. 본 논문에서 사용한 기법 이외의 방법을 사용하여 수명평가 정확도를 개선하는 방향에 대한 의견도 제시하였다.

  • PDF