DOI QR코드

DOI QR Code

Computational mechanics and optimization-based prediction of grain orientation in anisotropic media using ultrasonic response

  • Kim, Munsung (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Moon, Seongin (Korea Atomic Energy Research Institute) ;
  • Kang, To (Korea Atomic Energy Research Institute) ;
  • Kim, Kyongmo (Korea Atomic Energy Research Institute) ;
  • Song, Sung-Jin (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Suh, Myungwon (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Suhr, Jonghwan (School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2020.06.17
  • 심사 : 2020.11.27
  • 발행 : 2021.06.25

초록

Ultrasonic nondestructive testing is important for monitoring the structural integrity of dissimilar metal welds (DMWs) in pressure vessels and piping in nuclear power plants. However, there is a low probability of crack detection via inspection of DMWs using ultrasonic waves because the grain structures (grain orientations) of the weld area cause distortion and splitting of ultrasonic beams propagating in anisotropic media. To overcome this issue, the grain orientation should be known, and a precise ultrasonic wave simulation technique in anisotropic media is required to model the distortion and splitting of the waves accurately. In this study, a method for nondestructive prediction of the DMW grain orientations is presented for accurate simulation of ultrasonic wave propagation behavior in the weld area. The ultrasonic wave propagation behavior in anisotropic media is simulated via finite-element analysis when ultrasonic waves propagate in a transversely isotropic material. In addition, a methodology to predict the DMW grain orientation is proposed that employs a simulation technique for ultrasonic wave propagation behavior calculation and an optimization technique. The simulated ultrasonic wave behaviors with the grain orientations predicted via the proposed method demonstrate its usefulness. Moreover, the method can be used to determine the focal law in DMWs.

키워드

과제정보

This study was supported by the Ministry of Science and ICT (NRF-2017M2A8A4015158).

참고문헌

  1. A. Gezaei Abera, et al., Prediction of grain orientation in dissimilar metal weld using ultrasonic response of numerical simulation from deliberated scatters, Int. J. Pres. Ves. Pip. 168 (2018) 1-10. https://doi.org/10.1016/j.ijpvp.2018.09.001
  2. H.-H. Kim, et al., Simulation based investigation of focusing phased-array ultrasound in dissimilar metal welds, Nuclear Engineering and Technology 48 (2016) 228-235. https://doi.org/10.1016/j.net.2015.10.011
  3. H. Shah Hosseini, et al., Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds, Mater. Char. 62 (4) (2011) 425-431. https://doi.org/10.1016/j.matchar.2011.02.003
  4. J. Ye, H.-J. Kim, S.-J. Son, S.-S. Kang, K. Kim, M.-H. Song, Model-based simulation of focused beam fields produced by a phased-array ultrasonic transducer in dissimilar metal welds, NDT&E International 44 (2011) 290-296. https://doi.org/10.1016/j.ndteint.2011.01.003
  5. J.A. Ogilvy, Computerized ultrasonic ray tracing in austenitic steel, NDT&E International 18 (2) (1985) 67-77. https://doi.org/10.1016/0308-9126(85)90100-2
  6. J. Moysan, A. Apfel, G. Corneloup, B. Chassignole, Modeling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity, Int. J. Pres. Ves. Pip. 80 (2003) 75-85. https://doi.org/10.1016/S0308-0161(03)00016-4
  7. A. Apfel, J. Moysan, G. Corneloup, T. Fouquet, B. Chassignole, Coupling an ultrasonic propagation code with a model of the heterogeneity of multipass weld to simulate ultrasonic testing, Ultrasonics 43 (2005) 447-456. https://doi.org/10.1016/j.ultras.2004.09.004
  8. J. Ye, J. Moysan, S.J. Song, H.J. Kim, B. Chassignole, C. Gueudre, O. Dupond, Influence of welding passes on grain orientation - the example of a multi-pass V-weld, Int. J. Pres. Ves. Pip. 93 (94) (2012) 17-21.
  9. Dassault, ABAQUS Version 6.14. User's Manual, Dassault Systems Simulia, 2018.
  10. M.B. Drozdz, Efficient Finite Element Modeling of Ultrasound Waves in Elastic Media, Ph.D. Thesis, Imperial College of Science Technology and Medicine, 2008.
  11. H. Sun, H. Waisman, R. Betti, A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers, Int. J. Numer. Methods Eng. 105 (2016) 1014-1040. https://doi.org/10.1002/nme.5006
  12. H. Sun, et al., Simultaneous identification of structural parameters and dynamic input with incomplete output-only measurements, Struct. Contr. Health Monit. 21 (6) (2014) 868-889. https://doi.org/10.1002/stc.1619
  13. H. Sun, et al., A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers, Int. J. Numer. Methods Eng. 105 (2016) 1014-1040. https://doi.org/10.1002/nme.5006
  14. S. Moon, S. Han, T. Kang, S, Han, M. Kim. Model-based Localization and Mass-Estimation Methodology of Metallic Loose Parts. NET, (available online).
  15. H. Jeong, Time reversal-based beam focusing of an ultrasonic phased-array transducer on target in anisotropic and inhomogeneous welds, Mater. Eval. 72 (5) (2014) 589-596.
  16. J.A. Ogilvy, Ultrasonic bean profiles and beam propagation in an austenitic weld using a theoretical ray tracing model, Ultrasonics 24 (1986) 337-347. https://doi.org/10.1016/0041-624X(86)90005-3
  17. J.A. Ogilvy, Ultrasonic reflection properties of planar defects within austenitic welds, Ultrasonics 24 (1988) 318-327. https://doi.org/10.1016/0041-624X(88)90029-7
  18. J.A. Ogilvy, A layered media model for ray propagation in anisotropic inhomogeneous materials, Appl. Math. Model. 18 (2) (1990) 237-247. https://doi.org/10.1016/0307-904X(90)90014-V
  19. J.A. Ogilvy, An iterative ray tracing model for ultrasonic nondestructive testing, NDT&E International 25 (1992) 3-10. https://doi.org/10.1016/0963-8695(92)90002-X
  20. A. Apfel, J. Moysan, G. Corneloup, B. Chassignole, Simulations of the Influence of the Grains Orientations on Ultrasounds Propagation, 16th World Conference on Nondestructive Testing (WCNDT 2004), September 2004. Montreal (Canada).