• 제목/요약/키워드: Pipelines

검색결과 828건 처리시간 0.024초

각종 매설관의 내진성능평가를 위한 곡선적합식의 개발 (Development of Curve Fitted Equations for Seismic Performance Evaluation of Various Buried Pipelines)

  • 정진호;박병호;김성반
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1326-1333
    • /
    • 2006
  • Purpose of this research is a development for the curve fitted equations that can improve practical calculation and work application when seismic performance has been evaluated and this work has been made a study of the dynamic response under various boundary conditions of buried pipelines to compare the dynamic behavior of concrete pipe and steel pipe, FRP pipe. This research have been developed curve fitted equations that can be improving efficiency and practicality. Using a nonlinear least square method, and after testing several different exponential equations, Proposed the curve fitted equations to give the best result and constant value by the propagation velocities. With these results, dynamic response analysis and seismic performance evaluation have been achieved on concrete pipe, steel pipe and FRP pipe that have a various boundary conditions. Degree of a polynomial expression and coefficient value by propagation velocity have been calculated when using the curve fitting equations.

  • PDF

개도율에 따른 가스파이프라인용 볼 밸브 후류유동의 수치평가 (Numerical Evaluation of Flow Nature at the Downstream of a Ball Valve Used for Gas Pipelines with Valve Opening Rates)

  • 김철규;이상문;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.370-377
    • /
    • 2018
  • Ball valve has been widely used in the field of high-pressure gas pipeline as an important component because of its low flow resistance and good leakage performance. The present paper focuses on the flow nature at the downstream of the ball valve used for gas pipelines according to valve opening rates. Steady 3-D RANS equations, SC/Tetra, have been introduced to analyze the flow characteristics inside the ball valve. Numerical boundary conditions at the inlet and outlet of the valve system are imposed by mass flow-rate and pressure, respectively. Velocity distributions obtained by numerical simulation are compared with respect to the valve opening rates of 30, 50, and 70%. Cavity distributions, asymmetry flow velocity and the flow stabilization point at each opening rate are also compared. When the valve opening rates are 30 and 50%, the flow stabilization requires the sufficient length of 10D or more due to the influence of the recirculation flow at the downstream of the valve.

전자 전단 간섭법과 유한요소법을 이용한 압력용기의 내부결함 측정에 관한 연구 (A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography and Finite Element Method)

  • 강영준;강형수;채희창
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.29-37
    • /
    • 2001
  • The application of laser in pipelines was started from the base of using laser in nuclear facilities industries and power plants. Because laser can be delivered to a remote area without any difficulties, the application of laser in many industries can solve many difficulties from limitation of access in danger area and reduced the risks of workers. Therefore, we developed a new experimental technique to measure internal defects of pressure vessels with a combination of shearog-raphy and image processing technique. Conventional NDT methods have been taken relatively much time, money and manpower because of performing as the method of contact with objects to be inspected. But digital shearography is laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time mea-surement. In this paper, we find the optimum shearing magnitude with EFM and experiment and measured internal crack length of the pressure vessels at a real time and estimated the error of the results.

  • PDF

An experimental study on the effects of internal tubular coatings on mitigating wax deposition in offshore oil production

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1333-1339
    • /
    • 2014
  • As the demand for petroleum resources increases, and oilfields on lands and in shallow-sea become exhausted, the areas for oil production are expanding to the deep sea and therefore technologies for flow assurance are coming into the highlight. In low temperature environment such as the deep sea, wax is accumulated and prevents stable oil production. Therefore, the development of flow assurance technologies is required. Wax is precipitated in crystalline form when the oil temperature decreases below the wax appearance temperature; it then accumulates on the inner walls of pipelines causing blockages. In particular, in subsea pipelines, which have a large surface contact area with the surrounding seawater, wax deposition problems are frequent. The internal tubular coating can effectively reduce wax deposition without pausing oil production when the coating is appropriately designed. This study carried out wax deposition tests on a number of internal tubular coatings under single flow conditions. The results were analyzed for the effects that the physical properties of the coatings had on wax deposition.

구속효과를 고려한 가스배관 결함의 파괴거동해석 (A Study on the Fracture Behavior of a Crack in Gas Pipelines Considering Constraint Effects)

  • 심도준;최재붕;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.1-6
    • /
    • 2000
  • FFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it assumes that J-integral uniquely characterizes crack-tip stress-strain fields. However, it has been shown that it is not sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to Investigate the fracture behavior of a crack in gas pipeline by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature$(24^{\circ}C)$ and low temperature$(-40^{\circ}C)$ to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects.

  • PDF

장기유출 모의를 통한 도시유역 불투수율에 따른 유출계수 변화 (Estimation of runoff coefficient through impervious covers analysis using long-term outflow simulation)

  • 김영란;황성환
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.635-645
    • /
    • 2014
  • The changes of rainfall pattern and impervious covers have increased disaster risks in urbanized areas. Impervious covers such as roads and building roofs have been dramatically increased. So, it is falling the ability safety of flood defense equipments to exist. Runoff coefficient means ratio of runoff by whole rainfall which is able to directly contribute at surface runoff during rainfall event. The application of accurate runoff coefficients is very important in sewer pipelines design. This study has been performed to estimate runoff characteristics change which are applicable to the process of sewer pipelines design or various public facilities design. It has used the SHER model, a long-term runoff model, to analyze the impact of a rising impervious covers on runoff coefficient change. It thus analyzed the long-term runoff to analyze rainfall basins extraction. Consequently, it was found that impervious surfaces could be a important factor for urban flood control. We could suggest the application of accurate runoff coefficients in accordance to the land Impervious covers. The average increase rates of runoff coefficients increased 0.011 for 1% increase of impervious covers. By having the application of the results, we could improve plans for facilities design.

이중송수관로를 이용한 안정적인 송수를 위한 설계인자에 관한 연구 (A research on the design parameters for a double-transmission main system for sustainable water supply)

  • 현인환;홍준의;김두일
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.129-138
    • /
    • 2013
  • Water interruption is often caused by a rupture in the branch-like singular pipeline. This will cause critical complaints from household and may decrease public service quality. As an alternative of singular pipeline, additional parallel pipeline could be installed for sustainable water supply. This system is called double pipeline system and able to be utilized for water transmission line between treatment plant and distribution reservoir. Construction of double pipeline was thought to increase capital cost, which can be an issue to waterworks authorities. Reducing capital cost was possible by means of installing connectors between two parallel pipelines because of reduced diameter of each pipe. To obtain optimal design condition for connectors, it was necessary to compare water pressure according to accident location, to investigate flow according to connection pipe spacing, connection pipe diameter, and aging of pipe. Reliable and economical connection layouts were determined based on these results. The cost estimation for each design condition was carried out. Cost was approximately reduced by 20 ~ 30 % compared to the double pipeline without connections. In addition to this, connection between double pipelines could expect extra benefits for maintenance since the pipe could be repaired and rehabilitated without interruption.

감육현상을 고려한 가스배관의 파손확률 평가 (Failure Probability Assessment of Gas Pipelines Considering Wall-Thinning Phenomenon)

  • 이상민;윤강옥;장윤석;최재붕;김영진
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.158-166
    • /
    • 2005
  • Pressurized gas pipeline is subject to harmful effects both of the surrounding environment and of the materials transmitted in them. In order to maintain the integrity, reliable assessment procedures including tincture mechanics analysis etc are required. Up to now, the integrity assessment has been performed using conventional deterministic approaches even though there are many uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for gas pipeline evaluation. The objectives of this paper are to estimate the failure probability of corroded pipeline in gas and oil plants and to propose limited operating conditions under different types of leadings. To do this, a probabilistic assessment program using reliability index and simulation techniques was developed and applied to evaluate failure probabilities of corroded API-5L-X52/X60 gas pipelines subjected to internal pressure, bending moment and combined loading. The evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Monitoring of the Content of Imidazoline-Containing Corrosion Inhibitor

  • Zadorozhny, P.A.;Sukhoverkhov, S.V.;Markin, A.N.;Savin, K.I.;Prokuda, N.A.
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.161-166
    • /
    • 2017
  • The qualitative composition of active components of the corrosion inhibitor CGW-85567 was studied. It was found that С18:2 and С18:1 imidazolines and the corresponding imidazolin-amides are the major components. The HPLC/MS technique was developed for their determination in the water solutions of monoethylene glycol (MEG). Industrial application of the inhibitor showed that MEG solution retained high concentration of the inhibitor for a long time after ceasing its addition into pipelines. Low values of the partition coefficients (0.010-0.014) of imidazolines in the system "water solution of MEG (concentration of MEG 62-85% v/v) - gas condensate" have allowed to pass on from the technology of continuous pumping of the inhibitor into protected pipelines to the periodic dosing technology. Taking into account a long time of circulation in the system and high temperatures during MEG regeneration process possible degradation products of the inhibitor were studied. N, N-dimethyl-dodecanamine-1, and N, N-dimethyl-tetradecanamine-1 were identified as major degradation products of the corrosion inhibitor CGW-85567.

An Overview of Seabed Storage Methods for Pipelines and Other Oil and Gas Equipment

  • Fatah, M.C.;Mills, A.;Darwin, A.;Selman, C.
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.76-84
    • /
    • 2017
  • In the construction of subsea oil and gas developments, it is increasingly common that subsea oil and gas equipment will be installed in subsea well before final hookup and production. Installation of wellheads, subsea hardware, pipelines, and surface facilities (platforms, FPSO, FLNG, connected terminals, or gas plants) are increasingly driven by independent cost and vessel availability schedules; this gives rise to requirements that the subsea facilities must be stored in the seabed for a specific time. In addition, schedule delays, particularly in the installation or startup of the connected platform, FPSO, FLNG, or onshore plant may cause unexpected extensions of the intended storage period. Currently, there are two methods commonly used for storage subsea facilities in the seabed: dry parking and wet parking. Each method has its own risks, challenges, and implications for the facility life and its integrity. The corrosion management and preservation method selection is a crucial factor to be considered in choosing the appropriate storage method and achieving a successful seabed storage. An overview of those factors is presented, along with a discussion on the internal corrosion threats and assessments.