• Title/Summary/Keyword: Pipeline laying

Search Result 9, Processing Time 0.03 seconds

Numerical and Experimental studies on pipeline laying for Deep Ocean Water (해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구)

  • JUNG DONG-HO;KIM HYOUN-JOO;KIM JIN-HA;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF

Estimation of Plastic Bending Moment of Offshore Pipelines (해저관로의 대변형 굽힘에 의한 소성 모멘트 추정)

  • 이종현;최한석;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.21-26
    • /
    • 2003
  • The reel-lay method of submarine pipelines a continuous string of pipe coiled onto a reel. Assembly of this pipe that is string is accomplished onshore by welding, and nondestructive testing is carried out prior to coiling the pipe. The total length of pipes on the reel depends on the reel and pipe diameters. Pipeline installation is accomplished by uncoiling, straightening the pipe, and laying out the pipe string onto the seabed as the barge moves forward. Installation associated with coiling and uncoiling is related to the bending moment and strain relationship of the pipeline, A highgrade pipe material is required when the reel-lay method is used. This paper is concerned with the highly plastic bending moment of the pipeline, including the effect of ovality. Moment calculation in the pipe is accomplished by the numerical method, including the variable ovalities during the plastic bending of the pipe string. The new calculation method of the high plastic bending moment was applied to the reel-lay method.

Automatic Pipeline Welding System with Self-Diagnostic Function and Laser Vision Sensor

  • Kim, Yong-Baek;Moon, Hyeong-Soon;Kim, Jong-Cheol;Kim, Jong-Jun;Choo, Jeong-Bog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1137-1140
    • /
    • 2005
  • Automatic welding has been used frequently on pipeline projects. The productivity and reliability are most essential features of the automatic welding system. The mechanized GMAW process is the most widely used welding process and the carriage and band system is most effective welding system for pipeline laying. This application-oriented paper introduces new automatic welding equipment for pipeline construction. It is based on cutting-edge design and practical welding physics to minimize downtime. This paper also describes the control system which was designed and implemented for new automatic welding equipment. The system has the self diagnostic function which facilitates maintenance and repairs, and also has the network function via which the welding task data can be transmitted and the welding process data can be monitored. The laser vision sensor was designed for narrow welding groove in order to implement higher accuracy of seam tracking and fully automatic operation.

  • PDF

Comparison of Irrigation Methods for Upland Crops (전작물의 관개법에 관한 비교연구)

  • 정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.1
    • /
    • pp.1861-1871
    • /
    • 1970
  • This experiment was carried out to compare soil moisture contents and the amounts of irrigation water by varying irrigating methods for chinese cabbages. The irrigating methods were non-irrigation (Plot A), furrow irrigation(Plot B). fixed nozzle pipe irrigation(Plot C), subsoil pipeline irrigation at the depths of 15cm. and 30cm., laying out in the middle of the rows of chinese cabbages(Plot D) and subsoil pipeline irrigation at the depths of 15cm, and 30cm., laying out beneath the rows of the roots of chinese cabbages(Plot E). In this experiment soil moisture contents were measured by using a simple electric device. As a result, the fallowing items are derived; 1) A significionce of 5% was observed between the yields produced at the furrow irrigation plot and fixed nozzle pipe irrigation plot, and those at the non-irrigation plot and subsoil pipe-line irrigation plot. 2) In the subsoil pipe-line irrgatiion, the Plot D type was observed to be slightly better than the Plot E type in the effect of the growth of cabbages. 3) The ratio of the amounts of irrigation water applied in the furrow irrigation plot, fixed nozzle pipe irrigation plot and subsoil pipe-line irrigation plot is approximately 3.2:2.1.

  • PDF

Buckling response of offshore pipelines under combined tension and bending

  • Gong, Shun-Feng;Ni, Xing-Yue;Yuan, Lin;Jin, Wei-Liang
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.805-822
    • /
    • 2012
  • Offshore pipelines have to withstand combined actions of tension and bending during deepwater installation, which can possibly lead to elliptical buckle and even catastrophic failure of whole pipeline. A 2D theoretical model initially proposed by Kyriakides and his co-workers which carried out buckling response analysis of elastic-plastic tubes under various load combinations, is further applied to investigate buckling behavior of offshore pipelines under combined tension and bending. In association with practical pipe-laying circumstances, two different types of loadings, i.e., bent over a rigid surface in the presence of tension, and bent freely in the presence of tension, are taken into account in present study. In order to verify the accuracy of the theoretical model, numerical simulations are implemented using a 3D finite element model within the framework of ABAQUS. Excellent agreement between the results validates the effectiveness of this theoretical method. Then, this theoretical model is used to study the effects of some important factors such as load type, loading path, geometric parameters and material properties etc. on buckling behavior of the pipes. Based upon parametric studies, a few significant conclusions are drawn, which offer a theoretical reference for design and installation monitoring of deepwater pipelines.

The Political Economic Analysis of the Siberian Pipeline Construction (시베리아 송유관 건설의 정치경제학적 고찰)

  • Lee, Chai-Mun
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.110-131
    • /
    • 2004
  • The goal of the study is to analyze aggressive attempts of China and Japan to construct the Siberia oil pipeline in a direction to its advantage from the political economic perspective. The pipeline is to affect significantly energy Policies in the Northeast Asia in the future. First this Paper reviews the ongoing Processes of the Pipeline construction thus far. Next, domestic and foreign factors in Russia which are related to the laying of the pipeline, were taken into consideration. Applicability of the mercantilist and liberalist approaches to the energy supply of Russia were examined in the situation. As a result, the dualistic approach in energy supply was found to be limited in its real applicabilities and the political economic approach proved to be more suitable in that Russia currently seeks economic security in Northeast Asia. Finally the implications of the Siberia oil pipeline construction were suggested for the current energy situation in Korea.

  • PDF

Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Park, Kyu-Sik;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.227-243
    • /
    • 2015
  • In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Risk Ranking Analysis for the City-Gas Pipelines in the Underground Laying Facilities (지하매설물 중 도시가스 지하배관에 대한 위험성 서열화 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.54-66
    • /
    • 2004
  • In this article, we are to suggest the hazard-assessing method for the underground pipelines, and find out the pipeline-maintenance schemes of high efficiency in cost. Three kinds of methods are applied in order to refer to the approaching methods of listing the hazards for the underground pipelines: the first is RBI(Risk Based Inspection), which firstly assess the effect of the neighboring population, the dimension, thickness of pipe, and working time. It enables us to estimate quantitatively the risk exposure. The second is the scoring system which is based on the environmental factors of the buried pipelines. Last we quantify the frequency of the releases using the present THOMAS' theory. In this work, as a result of assessing the hazard of it using SPC scheme, the hazard score related to how the gas pipelines erodes indicate the numbers from 30 to 70, which means that the assessing criteria define well the relative hazards of actual pipelines. Therefore. even if one pipeline region is relatively low score, it can have the high frequency of leakage due to its longer length. The acceptable limit of the release frequency of pipeline shows 2.50E-2 to 1.00E-l/yr, from which we must take the appropriate actions to have the consequence to be less than the acceptable region. The prediction of total frequency using regression analysis shows the limit operating time of pipeline is the range of 11 to 13 years, which is well consistent with that of the actual pipeline. Concludingly, the hazard-listing scheme suggested in this research will be very effectively applied to maintaining the underground pipelines.