• Title/Summary/Keyword: Pipeline construction

Search Result 200, Processing Time 0.025 seconds

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

Parametric Study of Offshore Pipeline Wall Thickness by DNV-OS-F101, 2010

  • Choi, Han-Suk;Yu, Su-Young;Kang, Dae-Hoon;Kang, Hyo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • DNV-OS-F101 includes the concept development, design, construction, operation,and abandonment of offshore pipeline systems. The main objective of this offshore standard (OS) is to ensure that pipeline systems are safe during the installation and operational period. The pipeline design philosophy also includes public safety and environmental protection. The mechanical wall thickness design of a pipeline shall follow the design objectives and safety philosophy. This new design code includes a very sophisticated design procedure to ensure a safe pipeline, public safety, and environmental protection. This paper presents the results of a parametric study for the wall thickness design of offshore pipelines. A design matrix was developed to cover the many design factors of pipeline integrity, public safety, and environmental protection. Sensitivity analyses of the various parameters were carried out to identify the impacts on offshore pipeline design.

A Study on the Analysis of Smart Ball Requirements for P-IPA-Based Ondol Pipeline Inspection (온돌 파이프라인 하자 점검용 스마트볼 요구사항 분석 연구)

  • Chun, Young-Hyun;Lee, Ung-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.333-334
    • /
    • 2023
  • Interest in the commercialization of research results is increasing according to the recent social atmosphere. In the field of construction, new technologies are also being actively commercialized. Pre-analysis of products is an important procedure for future market entry. This study aims to conduct a product-based importance-performance analysis as one of the preliminary analysis methods for the commercialization of technologies developed in the field of construction and to explore their applicability. This study conducts a survey on those involved by setting the categories of product quality, convenience, and usability for the commercialization of previously developed pipeline inspection product. Based on this, we would like to present an analysis that calculates importance and performance of the product and helps to set the development direction through interrelationship analysis.

  • PDF

The Political Economic Analysis of the Siberian Pipeline Construction (시베리아 송유관 건설의 정치경제학적 고찰)

  • Lee, Chai-Mun
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.110-131
    • /
    • 2004
  • The goal of the study is to analyze aggressive attempts of China and Japan to construct the Siberia oil pipeline in a direction to its advantage from the political economic perspective. The pipeline is to affect significantly energy Policies in the Northeast Asia in the future. First this Paper reviews the ongoing Processes of the Pipeline construction thus far. Next, domestic and foreign factors in Russia which are related to the laying of the pipeline, were taken into consideration. Applicability of the mercantilist and liberalist approaches to the energy supply of Russia were examined in the situation. As a result, the dualistic approach in energy supply was found to be limited in its real applicabilities and the political economic approach proved to be more suitable in that Russia currently seeks economic security in Northeast Asia. Finally the implications of the Siberia oil pipeline construction were suggested for the current energy situation in Korea.

  • PDF

Development of Vibration Prediction Program of Gas Pipeline by Construction Vibration (건설진동에 의한 가스배관의 진동예측 프로그램 개발)

  • Jeong S. Y.;Hong S. K.;Kim J. H.;Koh J. P.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.30-35
    • /
    • 2001
  • Presently, working gas pipelines are being subjected to the influence of construction vibration. Especially on subway and road construction, gas pipelines are being influenced to construction vibration caused by use of construction equipment, passage of a large-sized vehicle and blasting. Buried gas pipelines are subjected to the influence of vibration caused by blast in the vicinity of pipeline, exposed gas pipelines are subjected to the influence of vehicle vibration. Therefore, in the study, it is developed to vibration prediction program of gas pipeline by analyzing measured construction vibration. This program is able to predict vibration of gas pipeline according to field conditions by using the results of structural finite element analysis and empirical equation by reliability analysis. And, this program contains the database of construction vibration. Additionally, this program is able to compute estimated blast vibration equation using measured blast vibration data in the field and to form graph of allowable charging gunpowder per delayed-action with the change of blast velocity. Therefore, field workers are able to predict construction vibration around gas pipeline and estimate safety of gas pipeline.

  • PDF

A Fundamental Study on Management Plan of Occurrence Data in Accordance with Engineering & Construction of Pipeline in Frozen Soil Region (동토지역 파이프라인 설계/시공에 따른 발생 데이터의 관리방안에 관한 기초연구)

  • Kim, Chang-Han;Won, Seo-Kyung;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.20-21
    • /
    • 2014
  • Recently, activation of related construction projects due to the large traditional gas resource development of frozen soil region of Russia are expected. It is necessary to provide a plan that can be utilized and collectively managed the occurrence data in the engineering & construction stage for continued contracts of the pipe construction. Therefore, this research is aimed to provide a management plan of occurrence data for efficient management in engineering & construction stage of pipeline business in frozen soil region. The data of the engineering & construction(related pipe construction projects) can be accumulated each version and multiply managed. Furthermore, I will be expected to be the foundation of the systematic management of the classifying based on metadata and the optimizing operations using big data method.

  • PDF

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

A Study of Vibration Characteristics of Exposed Gas Pipeline under Vehicle Loading (차량 하중을 받는 노출 가스배관의 진동특성 연구)

  • 홍성경;김준호;정석영
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 1999
  • Exposed gas pipeline in underground, especially subway construction site, has been continuously vibrated by vehicle above ground. Because this vibration can cause unexpected damages to pipeline, we had measured and analyzed the vibration. This paper presents results of the vibration analysis of exposed gas pipeline and the results are as follows. The major vertical vibration frequency of pipeline was about 13 Hz and the other frequency components disappeared when the vibration transmitted to I-beam and wire rope. Existence of wooden casement had not affect vibration of exposed gas pipeline. The results of modal analysis by experimental and analytical methods have good agreement and it is also shown that exposed pipeline has possibility of resonance at second mode.

  • PDF

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.