• Title/Summary/Keyword: Pipe expansion

Search Result 162, Processing Time 0.026 seconds

Development of Piping Analysis Procedure of a PWR Surge Line for Stratified Flow

  • Y. J. Yu;J. H. Jheon;K. S. Yoon;Park, S. H.;Kim, D. H.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.390-396
    • /
    • 1996
  • Piping Systems are usually designed for thermal expansion loads based on uniform temperatures at each cross section. However, in lines with low flow rates such as surge lines and spray lines, large transverse temperature gradients have been observed, resulting in too types of additional thermal stresses : (1) local thermal gradient stresses which are independent of routing and supports and (2) gross bending stresses due to induced pipe curvature which are routing and support system dependent. This paper presents a simplified method for analyzing a PER surge line for stratified flow.

  • PDF

Numerical investigation of gaseous detonation observed in the elasto-plastic metal tubes (탄소성 금속관 내 가스 폭굉의 수치적 연구)

  • Gwak, Min-cheol;Do, Yeong-dea;Park, Jeong-su;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.85-87
    • /
    • 2012
  • We present a numerical investigation on gaseous (ethylene-air mixture) detonation in the elastoplastical metal tubes to understand the wall effects associated with the developing detonation instability. The acoustic disturbances originating from the rapidly expanding tube walls reach the detonating flame surface, thereby causing flame distortions and total energy losses. The compressible Navier-Stokes equations with equation of state for gas and elasto-plastic deformation field equations for inert tubes are solved simultaneously to understand the complex multi-material interaction in the rapidly expanding gas pipe. In order to track governing variables across the material interface, we use the hybrid particle level-set and ghost fluid methods to precisely estimate the interfacial quantities. Features observed from the deforming (thin) tube show substantially different behavior when a detonation propagates in the rigid (thick) tube with no acoustically responding wall conditions.

  • PDF

Reliability Estimation of the Buried Pipelines for the Ground Subsidence (지반침하에 대한 매설배관의 건전성 평가)

  • 이억섭;김의상;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1557-1560
    • /
    • 2003
  • This paper presents the effect of varying boundary conditions such as ground subsidence on failure prediction of buried pipelines. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with three cases of ground subsidence. We estimate the distribution of stresses imposed on the buried pipelines by varying boundary conditions and calculate the probability of pipelines with von-Mises failure criterion. The effects of random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and thickness of pipeline on the failure probability of the buried pipelines are also systematically studied by using a failure probability model for the pipeline crossing a ground subsidence region.

  • PDF

A Seismic Stability Design by the KEPIC Code of Main Pipe in Reactor Containment Building of a Nuclear Power Plant (원자력 발전소 RCB 내 중요배관의 KEPIC 코드에 의한 내진 안전성 설계)

  • Yi, Hyeong-Bok;Lee, Jin-Kyu;Kang, Tae-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.233-238
    • /
    • 2011
  • In piping design of nuclear power plant facilities, the load stress according to self-weight is important for design values in test run(shutdown and starting). But sometimes it needs more studies, such as seismic analysis of an earthquake of power plant area and fatigue life and stress of thermal expansion and anchor displacement in operating run. In this paper, seismic evaluations were performed to nuclear piping system of Shin-Kori NO. 3&4 being built in Pusan lately. Results of seismic analysis are evaluated on basis of KEPIC MN code. The structural integrity on RCB piping system was proved.

A Numerical Analysis Study on Evaluation of the Reliability for Bellows in the Vehicle Exhaust System (수치해석에 의한 자동차 배기시스템의 벨로우즈 강도평가에 관한 연구)

  • Lee, S.H.;Sim, D.S.;Oh, S.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2005
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. In this paper, the dynamic characteristics of bellows were investigated by Finite element methods. Using Anany program, the natural frequencies and evaluation of the reliability of bellows were also investigated.

  • PDF

Prediction of Two-phase Flow Patterns and Noise Evaluation for Evaporator Pipe in a Refrigerator (냉장고 증발기 배관의 2상유동양식 예측 및 소음 평가)

  • Heo, So-Jung;Kim, Min-Seong;Han, Hyung-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.916-923
    • /
    • 2011
  • The refrigerant after the expansion valve interchanges the heat at the evaporator. At this moment, the state of gas and liquid becomes two-phase flow and causes irregular noise. In order to avoid the noise, the two-phase flow pattern should be predicted. In this paper, the procedure to predict the two-phase flow patterns such as churn flow and annular flow was suggested using the CFD software. The experiments using refrigerant-supplying equipment was carried out and the noise levels according to the flow pattern were measured. The flow patterns predicted by this procedure showed good agreement with those by experiments. The churn flow is noisier than annular flow pattern.

Application of Substructure Synthesis Method for Analysis of Acoustic System (음향계의 해석을 위한 부분구조합성법의 적용)

  • 오재응;고상철;조용구
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF

Numerical Simulations on the O-ring Extrusion in Automotive Engines (자동차 엔진에서 O-링의 압출거동에 관한 수치적 연구)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.297-303
    • /
    • 1999
  • O-rings in automotive engines are important components such as a coolant pipe, engine oil circulating lines and fuel injector for sealing that makes efficient performance of the engine. Life cycle of O-rings is effected in environments of the O-ring seal, like that applied pressure, working temperature, precompressed ratio and materials. It is related in extrusion, expansion and fatigue failure of O-rings. In this paper, an pressurized, compressed elastomeric O-ring inserted into a rectangular groove is analysed numerically using the nonlinear finite element method. The calculated FEM results showed that extrusion ratio and contact stress are strongly related to the gap clearance and edge radius of the groove.

Case study on Hydraulic characteristics within Chlorine Contactors in Series (염소 접촉조 직렬 연결시 수리흐름 특성에 관한 연구)

  • Kang, Tea-Hun;Chae, Seon-Ha;Kim, Seong-Su;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.497-502
    • /
    • 2011
  • In order to examine the effects of combination of plug flow reactors in series on hydraulic characteristics, comparative tracer tests were conducted for the cases of the existing clear well and clear wells combined in series. From the results of tests, $T_{10}$/T within existing clear well was 0.62~0.68 depending on inlet flowrate, and that in the case of combination in series was 0.69~0.78. While it would be minor improvement in contact efficiency, it would be appropriate to combine two clearwell with pipe in series for expansion.

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.