• Title/Summary/Keyword: Pipe bending

Search Result 290, Processing Time 0.028 seconds

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Applicability of the mα-tangent Method to Estimate Plastic Limit Loads of Elbows and Branch Junctions (선형탄성해석과 mα-tangent방법을 이용한 배관 한계하중 평가 적용성)

  • Gim, Jae-Min;Kim, Sang-Hyun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • In this study, the limit loads calculated by the $m_{\alpha}-tangent$ method based on the linear finite element analysis are compared with the closed form solutions that are proposed by various authors. The objects of the analysis is to select the elbow and the branch pipe which are representative structure of piping system. The applicability of the $m_{\alpha}-tangent$ method are investigated by applying it to cases with various geometries. The internal pressure and the in-plane bending moment are considered and the $m_{\alpha}-tangent$ method is in good agreement with the existing solutions in case of elbows. However, the limit loads calculated by the $m_{\alpha}-tangent$ method for branch junctions do not agree well with the existing solutions and do not show any tendency. The reason is a biased result due to the stress concentration of the discontinuous parts.

A Study on the Lateral Behavior of Steel Pipe Piles in Centrifugal Test (원심모형실험에 의한 강관말뚝의 수평거동연구)

  • Kim, Yeong-Su;Seo, In-Sik;Kim, Byeong-Tak
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.5-20
    • /
    • 1996
  • This paper presents results from a series of model tests on laterally loaded single piles with both free-head and free-tip conditions. Model tests, using a centrifuge apparatus (middie size, Mark II in 7.1.7.) were carried out in sand based on the variation of different gravity acceleration and flexural stiffness of the pile and relative density of the soil. The aims of this study are to estimate the effect of gravity acceleratioil, flexordis stiffness, and relative density on the behavior of the pile embedded in Toyoura sand and to evaluate the applicability of a family of the p-y curves which was presented by several reseachers(Mur chison & O'Neill, neese et n., scott, Det worske veritas, nondner). The Program is deviloped by using p-y curves, and it can be used for the calculation of the displacement distri bution, bending moment distribution, and soil reaction distribution. By comparing meas ured responses with predicted one it is shown that the results of the p-y curve equation presented by Murchison & O'Neill and Kondner agreed with the general trend observed by the centrifuge tests much better than the numerical solutions predicted by the other sets of p -y curves.

  • PDF

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.

The Characteristic of Residual Stress and Fracture Toughness on The Welded Joint of HT50 by Laser Welding (50kg급 고장력강 레이저용접부의 용접잔류응력 및 파괴인성 특성)

  • Ro, Chan-Seung;Bang, Han-Sur;Ko, Min-Sung;Kim, Sung-Ju;Kim, Ha-Sig
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.93-96
    • /
    • 2003
  • Laser beam welding process is a relatively new process in comparison with arc welding process, but it is expected to apply widely because of the many advantages, and research and development of that process is being progressed actively for the practical use. the application of this welding process has been restricted due to the high initial investment and the need of precise processing against the material, but cost reduction and thick plate welding in high speed have become practial by recent technological development, and this welding process to not only small parts in automobile, machinery and physicochemical field, but also a large structure and pipe line are being applied. In order to utilize this welding process appropriately to a steel structure, the properties of welding residual stresses and fracture toughness in welded joints are to be investigated for relibilty. On this study, after performing the finite element analysis, thermal and residual stress properties have been examined to the general structural steel (HT50) by laser beam welding. Besides, the property of fracture toughness has been investigated by the Charpy impact test and 3-points bending CTOD test carried out in the range of temperature between $-60^{\circ}C$ and $20^{\circ}C$. From the research results it is revealed that the maximum residual stress appears in the center of plate thickness and the fracture toughness is influenced by strength mis-match.

  • PDF

Element and Crack Geometry Sensitivities of Finite Element Analysis Results of Linear Elastic Stress Intensity Factor for Surface Cracked Straight Pipes (표면균열이 있는 직관에 대한 선형탄성 응력확대계수 유한요소해석 결과의 요소 및 균열형상 민감도)

  • Ryu, Dongil;Bae, Kyung-Dong;Je, Jin-Ho;An, Joong-Hyok;Kim, Yun-Jae;Song, Tae-Kwang;Kim, Yong-Beum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.521-527
    • /
    • 2013
  • This study provides the elastic stress intensity factors, K, for circumferential and longitudinal surface cracked straight pipes under single or combined loads of internal pressure, bending, and torsion based on three-dimensional (3D) finite element (FE) analyses. FE results are compared with two different types of defect assessment codes (API-579-1 and RCC-MR A16) to prove the accuracy of the FE results and the differences between the codes. Through the 3D FE analysis, it is found that the stress intensity factors are sensitive to the number of elements, which they were believed to not be sensitive to because of path independence. Differences were also found between the FE analysis results for crack defining methods and the results obtained by two different types of defect assessment codes.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.

The behavior of a Cut Slope Stabilized by Use of Piles during Heavy Rain (억지말뚝으로 보강된 절개사면의 강우시 거동)

  • Han, Jung-Geun;Hong, Won-Pyo;Sin, Min-Ho
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 1996
  • An instrumentation system is designed to observe the behavior of slope soil and stabilizing piles during heavy rains. Inclinometers, standpipe piezometers and strain gages are installed into a cut slope reinforced by a row .of piles for an apartment. The horizontal deflection and bending stress developed on the piles can be measured, respectively, by the inclinometers and strain gages installed in piles, while the horizontal deformation of the slope soil can be measured by the inclinometer installed in the soil across the open space between piles. The groundwater level doss not grow so sensitively during heavy rain. The behavior of piles and slope is 서footed by the wetting front, since the driving force of slope increases with the weight of slope soil above the wetting front. The stabilizing piles and the slope soil show elastic behavior during heavy rain.

  • PDF

Suggestion of a Design Method for UAM (강관 다단 그라우팅 공법(UAM)의 설계법 제안)

  • 박이근;임종철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.97-106
    • /
    • 2004
  • In case of tunnel construction with a shallow soil cover in cohesionless soils or highly weathered rocks, reinforcement measures are required for a tunnel stability during the tunnel construction. Recent developments show that the use of Umbrella Arch Method(UAM) as tunnel reinforcement and water cut-off in domestic projects has increased. Unfortunately, guidelines for the design and construction of UAM have not been established, only empirical designs and applications in tunnel construction have been performed so far. In this study, behaviour of the steel pipes installed on the tunnel roof was analyzed through the monitoring of bending and axial stresses of the pipes with the advance of the tunnel face. The monitoring results were used in the establishment of the loading mechanism around the pipe. This paper suggests, the guidelines used in the determination of the total length, overlapping length and lateral spacing of the reinforcing pipes obtained from the established loading mechanism.