• Title/Summary/Keyword: Pilot scale system

Search Result 357, Processing Time 0.026 seconds

Anti-Sway Control of Container Cranes;Inclinometer, Observers, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1365-1370
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and its maintenance is easy. However, it gives almost the same performance. Various observers for estimating the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of the rail-mounted quayside crane is constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the pilot crane constructed. Experimental results are provided.

  • PDF

Development of Pervaporation System Simulator (투과증발 시스템 모사기 개발)

  • 장재화;유제강;안승호;이규현;류경옥
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • A simulator has been developed in order to simulate and to be used to design the pervaporation system for separating organic/water mixtures. This simulator is composed of simulation engine, which includes a modeling of pervaporation system and the numerical analysis, and Graphical User Interface(GUI), which enables us to operate the simulator more easily in the Windows environment. The structure and operation of simulator were clearly presented by demonstrating the full-scale ethanol dehydration process. The performance of simulator turned out to be fairly good through comparing the simulation results with the experimental data of ethanol dehydration pilot tests.

  • PDF

Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.435-449
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and easy to maintain, while providing almost the same performance. A number of observers to estimate the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of a rail-mounted quayside crane was constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the constructed pilot crane. Experimental results are provided.

Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter (생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구)

  • Park, Chan G.;Jo, Eun Y.;Kim, Young H.;Park, Sung J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

Submerged Type Water Purification System using Hollow Fiber Microfiltration Membrane (중공사 정밀여과막을 이용한 상수처리용 일체형 시스템 개발)

  • Jeong, Gyu-Yeong;Kim, Hyeong-Su;Im, Jong-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.311-319
    • /
    • 1999
  • Membrane separation process is considered as an alternative of conventional water purification system using coagulationㆍsedimentation+sand filtration. In this study, it was examined that the application possibility of Hollowfiber Microfiltration membrane for water purification process. A $20m^3/day$ scale pilot plant was used for studying the possibility of long-term operation and the stability of water quality under the optimum conditions, 0.03m/h permeate flux, filtration for 10 minutes, pause for 2 minutes(including air-scrubbing for 30 seconds), obtained by lab-scale experiment. As a result, it was proved stability of pilot plant over one year and filtrate quality(Turbidity. SS etc). Therefore, it was proved that membrane separation process using Hollowfiber Microfiltration membrane can be applied for water purification system

  • PDF

A Field Study on the Application of Pilot-scale Vertical Flow Reactor System into the Removal of Fe, As and Mn in Mine Drainage (현장 파일럿 실험을 통한 광산배수 내 Fe, As, Mn 자연정화처리 효율평가)

  • Kwon, Oh-Hun;Park, Hyun-Sung;Lee, JinSoo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.695-701
    • /
    • 2020
  • This study aimed to monitor a pilot-scale vertical flow reactor (VFR) system being operated in long-term for water quality control of pH-neutral mine drainage containing Fe, Mn and As, discharged in D mine site. The treatment systems of VFR and zero manganese reactor (ZMR) consisted of sand/limestone, and steel slag/limestone, respectively. The systems were operated during about six months in order to evaluate their long-term treatment efficiency It was observed that both pH and alkalinity of mine drainage were remarkably increased and more than 98% of Fe, As and Mn ions was continuously removed during the tested period of time. In conclusion, the field results of this work demonstrated that the vertical flow reactor system can effectively treat mine drainage contaminated by Fe, As and Mn.

Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor (Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.

Development of simulation systems for telemanipulators in confined cell facilities

  • Yu, Seungnam;Ryu, Dongsuk;Han, Jonghui;Lee, Jongkwang;Lee, Hyojik;Park, Byungsuk
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.429-447
    • /
    • 2020
  • The considered simulation tasks are based on an electrometallurgical process development strategy and associated telemanipulator simulation systems are proposed with various scales of experimental facilities. Fundamentally, target facilities are assumed to be operated only by remote handling systems because the considered process is operated in hazardous environments. Futhermore, the feasibility at various scales should be experimentally verified with gradual increase in throughput. In this regard, bench, engineering, and pilot-scale simulation systems are important early-stage tools for assessing the practical operability of the target process with the material handling systems. Such simulation systems are highly customized for applications and are a precursor to larger pilot and demonstration-scale plants. This paper introduced and classified the developed simulator systems for this approach at various scales using remote handling systems which were assembled inside a virtual target facility, and the manmachine interface was included for a more realistic operation of the simulator. The results obtained for each simulator show the feasibility and requirement for improvement of the systems for the considered test issues with respect to the operation and maintenance of the process.

Application of Microfiltration and Reverse Osmosis System to Sewage Reuse for Industrial Water (하수를 공업용수로 재이용하기 위한 정밀여과 및 역삼투 시스템 적용에 관한 연구)

  • 강신경;이해군;김지원
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • This research was to demonstrate the Possibility of sewage reuse for industrial purpose with use of membrane system. A bench scale test with microfiltration and reverse osmosis showed that microfiltration in the sewage treatment was not able to remove the soluble salts but 70% suspended solids (SS), suggesting that the treated water could be used as direct cooling water. In addition, the reverse osmosis removed not only soluble salts but also 95% SS, proposing that reverse osmosis-treated water could be used as both indirect cooling water and rinsing water. For a 100 ton/day pilot plant, 20 and 12 elements of microfiltration and reverse osmosis were required, respectively.