• Title/Summary/Keyword: Pile driving equation

Search Result 28, Processing Time 0.029 seconds

Analysis of Dynamic Behavior of Pile Driving (타입말뚝의 동적거동 분석)

  • 조천환;이명환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.27-52
    • /
    • 2002
  • Pile driving formula, wave equation analysis of pile driving(WEAP) and dynamic pile loading test have been known to useful tools to appraise the behaviour of pile driving. This paper reviews basic theories of three methods and gives some suggestions to apply them to practice. And also some cases on application of the methods to the sites are discussed in this paper. It appears that it is inevitable for engineers to be experienced well so that the methods can be regarded as useful tools.

  • PDF

Prediction of Pile-Driving Resistance by the Wave Equation and Residual Stress (파동방정식 및 잔류응력에 의한 항타지대력 추정)

  • 황정규
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.15-26
    • /
    • 1986
  • A great number of different pile-driving formulas are widely used to determine the load-carr-ying capacity during driving. However, engineers have been unable to agree on any particular pile.driving formula because the mechanisms of pile driving action which involves many complications such as hammer-pile-soil interaction could not be solved completely in any practical manner. This paper is presented for the purpose of giving field engineers a reliable analytical procedures for the prediction of pile.driving resistance without resort to electronic computers based on the theory of longitudinal wave transmission in conjunction with the wave equation and on the consideration of the effect of residual stresses induced by reversed friction in pile.

  • PDF

Drivability Monitoring of Large Diameter Underwater Steel Pipe Pile Using Pile Driving Analyzer. (수중 대구경강관말뚝의 항타관입성 모니터링을 위한 PDA 적용 사례)

  • Kim, Dae-Hak;Park, Min-Chul;Kang, Hyung-Sun;Lee, Won-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.11-19
    • /
    • 2004
  • When pile foundation constructed by driving method, it is desirable to perform monitoring and estimation of pile drivability and bearing capacity using some suitable tools. Dynamic Pile Monitoring yields information regarding the hammer, driving system, and pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. Dynamic Pile Monitoring is performed with the Pile Driving Analyser. The Pile Driving Analyser (PDA) uses wave propagation theory to compute numerous variables that fully describe the condition of the hammer-pile-soil system in real time, following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and an estimate of pile capacity. The PDA has been used widely as a most effective control method of pile installations. A set of PDA test was performed at the site of Donghea-1 Gas Platform Jacket which is located east of Ulsan. The drilling core sediments of location of jacket subsoil are composed of mud and sand, silt. In this case study, the results of PDA test which was applied to measurement and estimation of large diameter open ended steel pipe pile driven by underwater hydraulic hammer, MHU-800S, at the marine sediments were summarized.

  • PDF

Reliability of Pile Driving Formula (항타공식의 신뢰도)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.209-216
    • /
    • 1999
  • Prefabricated piles used for construction of highway bridges are most of steel pipe piles and few of prestressed concrete piles. Its installation and inspection are less controllable and have much uncertainty due to changes in subsoil and groundwater conditions. However, most of these piles have been controlled using outdated pile driving formula such as Hiley's formula which models just the energy conservation due to its simple applicability in the field. This formula results in overstriking or sometimes understocking due to buckling of pile head. Engineers cannot ensure by the formula whether pile is installed properly. To compensate the drawbacks of excising pile formula, parameters in Hiley's formula and 55 formula are reviewed. Final sets used in pile formula and PDA test results(E.O.I.D) are measured during pile driving along the depth. These measured results along the depth were compared with each other and with N values, so that relations between the each result could be inferred. Also the factor of safety which can be used for pile driving formula are suggested.

  • PDF

An application of wave equation analysis program to pile dynamic formulae

  • Tokhi, H.;Ren, G.;Li, J.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.345-360
    • /
    • 2015
  • Wave equation analysis programs (WEAP) such as GRLWEAP and TNOWave were primarily developed for pre-driving analysis. They can also be used for post-driving measurement applications with some refinements. In the case of pre-driving analysis, the programs are used for the purpose of selecting the right equipment for a given ground condition and controlling stresses during pile driving processes. Recently, the program is increasingly used for the post-driving measurement application, where an assessment based on a variety of input parameters such as hammer, driving system and dynamic behaviour of soil is carried out. The process of this type of analysis is quite simple and it is performed by matching accurately known parameters, such as from CAPWAP analysis, to the parameters used in GRLWEAP analysis. The parameters that are refined in the typical analysis are pile stresses, hammer energy, capacity, damping and quakes. Matching of these known quantities by adjusting hammer, cushion and soil parameters in the wave equation program results in blow counts or sets and stresses for other hammer energies and capacities and cushion configuration. The result of this analysis is output on a Bearing Graph that establishes a relationship between ultimate capacity and net set per blow. A further application of this refinement method can be applied to the assessment of dynamic formulae, which are extensively used in pile capacity calculation during pile driving process. In this paper, WEAP analysis is carried out to establish the relationship between the ultimate capacities and sets using the various parameters and using this relationship to recalibrate the dynamic formula. The results of this analysis presented show that some of the shortcoming of the dynamic formula can be overcome and the results can be improved by the introduction of a correction factor.

Experimental Study for Prediction of Ground Vibration Responses by the Low-Vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jung, Seug-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.201-207
    • /
    • 2010
  • In this study, the SIP (Soil-cement Injected precast Pile) method among the Low-vibration & Low-noise pile driving methods was decided into study compensation. Ground vibrations by the SIP methods step by step divide and were analyzed. Quantitative response values and ground vibration equations with reliability were presented from findings of this study. Also, vibration responses that are occurred by the SIP method of construction were compared as quantitative with vibration responses by general method of construction that are presented in existent study. Ground vibration values by the SIP method correspond to level of 17 ~ 57% of values that are assumed by the Attewell & Famer's equation, respectively, and these result compares in reliability 50% and separated distance 10 ~ 50 m. Also, those values were analyzed that correspond to level of 14 ~ 96% of ground vibration values by the Prof. Park's equation, respectively. Construction limit extents, separation distances from vibration occurs position, were presented that can satisfy domestic criteria for vibration control for the SIP methods. Those presented in this paper were divided newly according to reliability.

  • PDF

Experimental Study on Vibration Reduction Estimation of PRD Pile Driving Method (PRD Pile Driving공법의 진동저감 평가를 위한 실험적 연구)

  • Kang, Sung-Hoo;Park, Sun-Joon;Jung, Seok-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.775-782
    • /
    • 2008
  • In this study, ground vibrations and aero space noises that is produced by the PRD(percussion rotary drill) were analyzed by work processes. Ground vibration equations were suggested by $2.798(SD)^{-0.793}$, $3.485(SD)^{-0.793}$, $3.705(SD)^{-0.793}$, according to experiment result, and these equations have reliability of 50%, 90%, 95%, respectively. Ground vibration values by the PRD method correspond to level of $5{\sim}34%$ of values that are assumed by the Attewell & Farmer's equation, and these result compares in reliability 50%. Also, those values were analyzed that correspond to level of $12{\sim}26%$ of ground vibration values by the Prof. Park etc.'s equations. But, the aero space noise was evaluated that is assumed by 88.9 dB(A) at separated distance 50m and is not satisfied even 85dB(A) that is the most negative noise value that present in domestic noise standard. The PRD method was analyzed that noise decrease effect exists hardly comparing with general pile driving method of construction. When is based in these results, the PRD method is judged that it is desirable that classify by the Low-vibration method more than the Non-violation noise method.

Drivability of Offshore Pile Foundation at Ieodo Ocean Research Station (이어도 해양과학기지 말뚝기초의 항타 관입성 연구)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Lee, Seung-Jun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.373-384
    • /
    • 2003
  • When pile foundation is constructed by dynamic method, it is desirable to perform monitoring of drivability with pile penetration. Dynamic pile monitoring yields information regarding driving hammer, cushion, pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. In this study, dynamic monitoring of the steel pipe pile was performed with Pile Driving Analyser (PDA). The PDA utilizes the wave propagation theory to compute numerous variables which describe the conditions of the hammer-pile-soil system in real-time and following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and estimation of pile bearing capacity. A series of PDA test were performed at the Ieodo Ocean Research Station (IORS) located in southeast of Marado, a southernmost small island south of Jeju Island. The drilling core sediments of Ieodo subsoil are composed of mud and sand, showing lamination and wavy or lenticular bedding, which were often bioturbated. This paper summarizes the results of PDA tests which were applied in measurement and estimation of large diameter open ended steel pipe pile driven by steam hammer, Vulcan-560 and MRBS-4600, at the marine sediments.

Consideration of Set-up Effect in Wave Equation Analysis of Pile Driving. (Set-up 효과를 반영한 타입말뚝의 파동이론해석)

  • 천병식;조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.95-104
    • /
    • 1999
  • The bearing capacity of piles driven in soils showing set-up tendency increases with time. Though WEAP is an excellent tool for evaluating the driveability of driven pile, it has some limitations to predict reliable bearing capacity of pile after driving. It is because the existing WEAP method cannot take into account time-dependent soil properties after driving. The set-up effect should be accounted for to obtain a reliable bearing capacity by the WEAP. Unfortunately, there are no sufficient methods to take the set-up effect into consideration in wave equation analysis. This paper suggests an alternative to consider time effect in wave equation analysis through statistical analysis of dynamic load test data both at the end of driving and in the beginning of restrike. It is shown that the suggested parameters(quake and damping) would be more reliable than the existing one for the wave equation analysis of driven piles.

  • PDF

Driveability Analysis of U-type Sheet Pile using WEAP Program (WEAP 프로그램을 이용한 U형 널말뚝의 항타관입성 해석)

  • Kim Byoung-Il;Kim Jae-Kyu;Lee Seung-Hyun;Lee Jong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.671-678
    • /
    • 2006
  • Vibratory pile driving has an advantage of reduced noise pollutions compared to impact pile driving and it has been very widely used in the installation of sheet piles. However, very little has been known about the driveability characteristics of sheet pile under vibratory driving. So, the proper sheet piles and vibratory hammer for an given soil profile and depth are determined on a empirical basis. In this study. the driveability of U-type sheet piles are analytically estimated using the commercial WEAP(Wave Equation Analysis of Piles) program. The WEAP analysis shows that penetration rate of sheet pile decreases as N value increases. And if penetration length is not over 20 meters, the rate of penetration decreases as the sectional area of sheet pile increases.

  • PDF