• 제목/요약/키워드: Pile bearing capacity

검색결과 532건 처리시간 0.023초

Polymer Base Bored Pile in Bangkok Subsoils

  • Teparaksa, Wanchai
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.407-426
    • /
    • 2008
  • The bentonite slurry has been used as the stabilize suspension for wet process bored pile construction in Thailand. The bentonite suspension has benefit on filtration in the sand layer, but it creates thick cake film along pile shaft and loose sedimentation at pile toe. The base grouting technique was widely used to rectify the soft base or loose sedimentation problem of bored pile. The base grouting technique was not increased only end bearing capacity, but was also more increase in skin friction capacity of the bored piles. The comprehensive researches on base grouting was carried out by installing PVC casing inside the shaft to allow the drilling through the pile base in order to collect the soil sample below the pile tip. The polymer based slurry recently was used to replace the bentonite slurry to overcome the thick cake film along pile shaft as well as loose sedimentation at pile toe. The extent research on polymer slurry by physical model was performed to verify the real behavior of polymer. The appropriate mixing ratio of polymer was proposed. The design skin friction coefficient, $\beta$ and end bearing coefficient, Nq, for sand layer base on fully instrumented tested pile were proposed. The application on remedial of the lose capacity bored pile with large displacement in Bangladesh was proposed and discussed.

  • PDF

Study on large tonnage pile foundation load test system and field test of long rock-socketed pile

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chun-xia;Xu, Dong
    • Geomechanics and Engineering
    • /
    • 제21권6호
    • /
    • pp.565-570
    • /
    • 2020
  • Large tonnage pile foundation load test system is designed in this paper by using pre-stressed technique to optimize the design of anchor pile reaction beam system, in which project pile can be successfully taken as anchor pile. The test results show that the cracks and excessive deformations of the prestressed anti-force device designed in this study have not occurred, and the prestressed tendons of the anchor pile ensure that the anchor pile will not be pulled and fractured, and the prestressed tendons can be reused, thus ensuring the safety and reliability of the test. This test method can directly test bearing capacity of long rock-socketed piles, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test studied, authors summarized the vertical bearing characteristics of long rock-socketed piles and the main problems that should be paid attention to during design and construction, and provided reliable solutions.

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(II) - 설계 사례 분석을 통한 매입 PHC말뚝의 설계 개선 방향 - (Study(II) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Improvement Measures of Current Design Method by Analyzing Current Design Data for Prebored PHC Piles -)

  • 여규권;윤대희;윤도균;최용규
    • 한국지반공학회논문집
    • /
    • 제35권8호
    • /
    • pp.31-42
    • /
    • 2019
  • 최근에 시공된 건축현장의 73개 설계 자료를 분석하여 매입 PHC말뚝에 대한 설계 현황을 고찰하였다. 매입 PHC말뚝의 설계에서 사용하고 있는 극한지지력 산정공식에 따라 산정한 전체지지력에 대한 주면마찰력의 분담율(SRF)는 20~53%로 나타났다. 극한주면마찰력이 과소평가되는 지지력 산정공식에 대한 개선이 필요한 것으로 판단되었다. PHC말뚝의 재료 성능에 대한 평균 설계 효율은 약 70%이었으며 지반 지지력에 대한 평균 설계 효율은 약 80%이었다. 즉, 지반의 설계 효율은 PHC말뚝의 설계 효율보다 약간 높은 수준으로 나타나고 있었다. 이는 지반 지지력을 설계하중보다 동등한 수준 또는 그것보다 약간 높은 수준으로 계산하고 있는 설계 현황에 기인한 것으로 판단되었다. 지반의 허용지지력을 PHC말뚝의 허용연직압축하중보다 높은 수준으로 산정하여야 할 것으로 판단되었다. 매입 PHC말뚝의 지지력 산정공식에서는 극한주면마찰력이 극한선단지지력보다 상대적으로 2.2배 정도 낮은 수준으로 계산되었다. 매입 PHC말뚝의 설계에서 적용하고 있는 극한지지력 산정공식들은 모두 국외 지반을 대상으로 개발되었으며 국내 지반에 대한 적용성 검증 없이 도입되어 사용되어 오고 있었다. 매입 PHC말뚝의 설계에서 적용할 지지력 산정공식의 개선이 이루어져야 할 것으로 판단되었다.

대구경 PHC말뚝 및 대구경 복합말뚝($\phi$1,000mm) 지지력 산정에 관한 연구 (Bearing capacity of large diameter PHC pile and large diameter composite pile)

  • 신윤섭;박재현;황의성;조성한;정문경;이진영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.351-359
    • /
    • 2010
  • Large PHC piles with a diameter of 1,000mm or larger were recently introduced for the first time in Korea. This paper presents full-scale static and dynamic pile load tests performed on two 1,000mm PHC piles and two composite piles with steel pipe piles of the same diameter in the upper portion, installed by driving and pre-boring. The objectives of the tests include evaluating pile drivability, load-settlement relation, allowable bearing capacity, and the stability of mechanical splicing element for the composite pile(a.k.a. non-welding joint). The performance of the large diameter PHC piles were thought to be satisfactory compared to that of middle sized PHC piles with a long history of successful applications in the domestic and foreign markets.

  • PDF

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

펄스파워를 이용한 현장타설말뚝의 지지력 특성 (Bearing Capacity of In-situ Pile Installed using Pulse Power)

  • 김태훈;채수근;정규점
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.521-527
    • /
    • 2005
  • In the past decades, complain about ground vibration and noise induced by pile driving has been quickly increased. Because of that, auger drilled piling methods have frequently used specially in urban area. However, the present auger drilled piling methods induce inevitable ground disturbance as well as a certain degree of vibration and noise due to the final hammering. For these reasons, a new auger drilled piling method is required to be developed. This paper introduces PDT(Pulse Discharge Technology) piling method and presents the characteristics of bearing capacity. The PDT piling method is to install in-situ piles using electric power so called Pulse. The pile installed by PDT appears to be able to develop shaft and end bearing capacity efficiently.

  • PDF

PAR에 의한 강관 말뚝의 극한 수직 및 수평 지지력 예측 (Prediction on Ultimate Vertical and Horizontal Bearing Capacity of Steel Pipe Piles by Means of PAR)

  • 최용규
    • 한국지반공학회지:지반
    • /
    • 제13권4호
    • /
    • pp.13-24
    • /
    • 1997
  • 말뚝 해석 프로그램인 PAR에 의하여 말뚝의 극한 수직 및 수평 지지력을 예측할 수 있는 방법을 제안하였으며,현장에서 수행된 말뚝재하시험 결과들을 이용하여 PAR에 의한 사례연구를 수행하였다. PAR에 의해 해석된 말뚝의 극한지지력은 정재하시험에서 구한 지지력에 대하여 약 15%이내의 오차범위에 들었다. 또한, 강관말뚝들에 수행된 정재하시헙, 정.동재하시험 그리고 PDA 결과들을 비교하였으며, PAR에 의해 극한지지력을 예측하였다. PAR을 이용하면 말뚝의 축방향 하중의 분포를 예측할 수 있었으며, 여기서, 하중전이해석도 근사적으로 수행할 수 있었다.

  • PDF

PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구 (A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile)

  • 박종배
    • 한국지반환경공학회 논문집
    • /
    • 제18권9호
    • /
    • pp.19-31
    • /
    • 2017
  • 미국 사례의 경우 항타말뚝과 현장타설말뚝은 동재하시험과 정재하시험 지지력 상관관계 분석에서 좋은 상관관계를 나타내었다. 하지만, 국내에서는 해외에서 많이 사용하지 않는 매입말뚝으로 주로 시공을 하고 있으며, 매입말뚝의 동재하시험 신뢰성에 대해 의문이 많아 동재하시험의 신뢰도를 확인하고자 하였다. 본 연구에서는 LH 현장(천안, 인천, 의정부)에서 PHC 매입말뚝에 대하여 재하시험을 실시하였으며, 동재하시험(EOID 7회, Restrike 7회)과 정재하시험(7회) 지지력을 비교 분석하였다. 그 결과 재항타동재하지지력 및 정재하지지력 평균 값 비교 시 정재하지지력 평균 값이 약 27% 높게 나타났다(신뢰도 : 0.73, 변동계수 : 0.3). 재항타지지력(Davisson 판정 값) 및 정재하지지력(Davisson 판정 값) 평균 값 비교 시 정재하지지력(Davisson 판정 값) 평균 값이 약 27% 높게 나타났다(신뢰도 : 0.73, 변동계수 : 0.2). 동재하시험과 정재하시험의 차이를 줄이고자 본 연구에서는 수정동재하지지력(EOID의 극한선단지지력+Restrike의 극한주면마찰력)을 제시하였으며, 수정동재하지지력과 정재하지지력을 비교했을 때는 그 차이가 9%로 줄어들었다(신뢰도 : 0.91, 변동계수 : 0.2). 또한 변동계수가 0.2로 줄어들어 일관성이 증가한 것으로 나타났다.

양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정 (Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests)

  • 정경자;조종석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF