• Title/Summary/Keyword: Pile axial load distribution

Search Result 25, Processing Time 0.025 seconds

Behavior of Axial Load Transfer for Open-ended Steel Pipe Pile in Alluvial Deposits (하상퇴적토층에 관입된 개단강관말뚝의 축하중 전이 거동)

  • 김상현;성인출;정창규;김명학;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.283-290
    • /
    • 2001
  • In this study, static Pile load tests and PDA for open-ended steel pipe pile($\phi$ = 609.6 mm, t = 14 mm) penetrated into the gravel layer(GP - GM) was accomplished and axial load distribution was measured. Based on the tests results, the ultimate bearing capacity and axial load bearing mode were examined. Also, the ultimate pile capacity was calculated by APIL $E^{PLUS}$./.

  • PDF

Static pile load test and load trasfer measurement for large diameter piles. (대구경 말뚝정재하시험 및 하중전이 측정사례)

  • 최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.107-141
    • /
    • 2000
  • Large diameter piles can be defined as piles with diameter of at least 0.76 m (2.5 ft). In bridge foundation, large diameter piles have been used as pier foundations and their use has been increased greatly. In this study, static pile load tests for large diameter piles peformed in Kwangan Grande Bridge construction site were introduced. Also, various sensor installation methods for several types of piles (that is, open-ended steel pipe pile, drilled shafts and socketed pipe piles), pipe axial load measuring method, load transfer analysis method and pile load test results (pile-head load - settlement curve, and pile axial load distribution curve along the pile depth) were introduced.

  • PDF

A Study on the Load Distribution Ratio and Axial Stiffness on Existing and Reinforcing-Pile in Vertical Extension Remodeling (수직증축시 기존말뚝과 보강말뚝의 하중분담율 및 축강성 분석)

  • Jeong, Sang-Seom;Cho, Hyun-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.17-30
    • /
    • 2019
  • This study presents the application of the numerical and analytical technique to simulate the Load Distribution Ratio (LDR) and to define axial stiffness on reinforcing pile foundation ($K_{vr}$) in vertical extension remodeling structure. The main objective of this study was to investigate the LDR between existing piles and reinforcing piles. Therefore, to analyze the LDR, 3D FEM analysis was performed as variable for elastic modulus, pile end-bearing condition, raft contacts, and relative position of reinforcing pile in a group. Also, using the axial stiffness ($K_{ve}$) of existing piles, the axial stiffness of reinforcing pile was defined by 3D approximate computer-based method, YSPR (Yonsei Piled Raft). In addition $K_{vr}$ was defined by reducing the $K_{ve}$considering the degradation of the existing piles.

A Study on the Verification Test for a Deformable Rod Sensor (변형봉 센서 검증실험에 관한 연구)

  • 김상일;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.35-47
    • /
    • 2003
  • In the conventional axial load transfer analysis for composite piles (i.e., steel pipe pile filled with concrete), it was assumed that the concrete's strain is same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by formular as prescribed by specification is used in calculation of pile axial load. But, the pile axial load calculated by conventional method had some difference with the actual pile load. So, the behavior of a composite pile could not be analyzed exactly. Thus, the necessity to measure the strain for each pile components was proposed. In this study, the verification test for DRS (Deformable Rod Sensor) developed to measure the strain of each pile component (i.e., the steel and the concrete) was performed. In the calculation of pile axial load using the DRS, elastic modulus of concrete could be determined by the uniaxial compression test for the concrete cylinder samples made in the test site and an average tangential modulus in the stress range of (0.2∼0.6)f$_ck$ was taken.

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

Analysis of Load Distribution Behavior in Vertical Extension Remodeling from Stiffness of Existing and Reinforcing Pile by Load Test (현장 재하시험을 통한 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따른 하중분담거동 분석)

  • Kim, Seok-Jung;Wang, Cheng-Can;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.61-72
    • /
    • 2020
  • It is generally considered that differences of axial stiffness between exiting pile and reinforcing pile affect the load distribution ratio during vertical extension remodeling. But there are few cases to verify the effect of stiffness by field load test on load distribution ratio in Korea. In this paper, a series of load tests for micropiles were carried out to evaluate the effect of axial stiffness on the load distribution ratio. First, different types of micropiles were constructed so that conventional micropiles simulated existing piles and waveform micropiles simulated reinforcing piles. Secondly, load tests were performed to evaluate the stiffness of each piles. After then, the raft was installed to make a piled raft system and load tests were applied on foundation to verify the effect of axial stiffness on the load distribution ratio. The experimental results show that the stiffness of waveform micropiles were 2.5 times larger than that of conventional micropiles, and the load distribution ratio between existing and reinforcing piles was increased according to axial stiffness of piles.

3D FE Analysis of Cast-in-situ Concrete Pile embedded in Weathered Rock (풍화암에 지지된 현장타설말뚝의 3차원 해석)

  • Kim, Sang-Baek;Lee, Whaol;Kwon, Oh-Kyun;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.167-172
    • /
    • 2000
  • In this study, the behaviors of a cast-in-situ concrete pile embedded in the weathered rock were analysed by a 3D numerical analysis using PENTAGON 3D and the results were compared with those of the field load test. The load-settlement relation and the load transfer relationship were evaluated from the numerical analysis. As a result, the load-settlement relation at the pile top and the axial load distribution with depth were predicted reasonably. And those results were similar with those of the field load test.

  • PDF

A Study on Field Application of a Deformable Rod Sensor to Large Diameter Drilled Shafts (대구경 현장타설말뚝에 대한 변형봉 센서의 현장적용성에 관한 연구)

  • 정성기;김상일;정성교;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.15-22
    • /
    • 2003
  • In the conventional load transfer analysis for a steel pipe drilled shaft, it was assumed that the concrete's strain is the same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by the formular as prescribed by specification is used in the calculation of pile axial load. But, the pile axial load calculation by conventional method differed to some extent from the actual pile load. So, the behavior of a steel pipe drilled shaft could not be analyzed exactly. Thus, the necessity to measure the strain for each pile component was proposed. In this study, a new approach for load transfer measurement of large diameter drilled shafts was suggested ; the strain of each pile component(i. e., steel and concrete) was measured by DRS(Deformable Rod Sensor), the elastic modulus was determined by the uniaxial compression test for concrete specimens made at test site and a value of elastic modulus was evaluated as average tangential modulus corresponding to the stress level of the (0.2-0.6)$f_{ck}$. Field application was confirmed by the results of load transfer measurement tests for 3 drilled shafts. The errors for calculated pile head load were -11 ∼16% and 3.4% separately.

Pile Load Transition and Ground Behaviour due to Development of Tunnel Volume Loss under Grouped pile in Sand (사질토 지반에서 터널체적손실 증가에 따른 군말뚝의 하중변이와 지반거동)

  • Oh, Dong Wook;Lee, Yong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • A development of underground space is very useful solution to slove problem occurred from ground surface enlargement in urban areas due to the growth of population, tunnelling is the most popular way and widely used. Researches regarding tunneling-induced pile-soil interactive behaviour have been conducted by many researchers. A study on pile axial force distribution due to tunnelling through laboratory model test, however, is being rarely carried out. In this study, therefore, authors investigate ground behaviour due to tunnelling below grouped pile subjected vertical load as well as pile axial force distribution. A concept of volume loss is used to express tunnel excavation, which is normally applied to 1~2% for tunnelling in soft ground. In this study, however, 10% of that applied to investigate failure mechanism. As a result of laboratory model test, a decrease of pile axial force occurs at 1.5% of volume loss, settlement of grouped pile is 1.2~4.7 times greater than the adjacent ground surface one. Ground deformations at 1.5% of volume loss are measured using Close Range Photogrammetry and compared with results from numerical analysis.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.