DOI QR코드

DOI QR Code

A Study on the Load Distribution Ratio and Axial Stiffness on Existing and Reinforcing-Pile in Vertical Extension Remodeling

수직증축시 기존말뚝과 보강말뚝의 하중분담율 및 축강성 분석

  • 정상섬 (연세대학교 토목환경공학과) ;
  • 조현철 (연세대학교 토목환경공학과)
  • Received : 2018.10.02
  • Accepted : 2018.12.12
  • Published : 2019.01.31

Abstract

This study presents the application of the numerical and analytical technique to simulate the Load Distribution Ratio (LDR) and to define axial stiffness on reinforcing pile foundation ($K_{vr}$) in vertical extension remodeling structure. The main objective of this study was to investigate the LDR between existing piles and reinforcing piles. Therefore, to analyze the LDR, 3D FEM analysis was performed as variable for elastic modulus, pile end-bearing condition, raft contacts, and relative position of reinforcing pile in a group. Also, using the axial stiffness ($K_{ve}$) of existing piles, the axial stiffness of reinforcing pile was defined by 3D approximate computer-based method, YSPR (Yonsei Piled Raft). In addition $K_{vr}$ was defined by reducing the $K_{ve}$considering the degradation of the existing piles.

본 연구는 3차원 수치해석을 통해 기존말뚝과 보강말뚝의 하중분담율(Load Distribution Ratio)과 근사적 해석 기법으로 보강말뚝의 축방향 강성(Axial Stiffness)을 산정하였다. 시공단계를 고려하여 말뚝기초의 LDR에 영향을 미치는 인자를 파악하기 위해서 1) 말뚝기초의 강성, 2) 말뚝기초의 선단지지조건, 3) 기초판 접촉효과, 4) 보강말뚝의 설치위치에 따라 해석을 수행하여 기존말뚝과 신설말뚝의 하중분담율 거동을 확인하였다. 또한 5) 기존말뚝의 축방향 강성($K_{ve}$)를 사용하여 말뚝지지 전면기초의 3차원 근사적 해석기법(YSPR)으로 보강말뚝의 직경에 따른 강성($K_{vr}$)을 산정하고, 장기간 사용으로 인한 경화를 고려하여 $K_{ve}$를 3단계로 나누어 감소시켜 보강말뚝의 강성 변화의 경향을 살펴보고, 신설 말뚝의 강성 산정방법을 제시하였다.

Keywords

GJBGC4_2019_v35n1_17_f0001.png 이미지

Fig. 1. Load case along the construction stages of remodeling process

GJBGC4_2019_v35n1_17_f0002.png 이미지

Fig. 2. Top view of model

GJBGC4_2019_v35n1_17_f0003.png 이미지

Fig. 3. Front view of model

GJBGC4_2019_v35n1_17_f0004.png 이미지

Fig. 4. Top view of model

GJBGC4_2019_v35n1_17_f0005.png 이미지

Fig. 6. Load-settlement curve

GJBGC4_2019_v35n1_17_f0006.png 이미지

Fig. 5. Front view of model & material properties

GJBGC4_2019_v35n1_17_f0007.png 이미지

Fig. 7. Variable stiffness of reinforcing pile

GJBGC4_2019_v35n1_17_f0008.png 이미지

Fig. 8. Pile end-bearing condition

GJBGC4_2019_v35n1_17_f0009.png 이미지

Fig. 9. Load distribution ratio with Raft

GJBGC4_2019_v35n1_17_f0010.png 이미지

Fig. 10. Reinforcing pile installation

GJBGC4_2019_v35n1_17_f0011.png 이미지

Fig. 11. YSPR (Yonsei Piled Raft) (Jeong, 2015)

GJBGC4_2019_v35n1_17_f0012.png 이미지

Fig. 12. Axial stiffness calculation

GJBGC4_2019_v35n1_17_f0013.png 이미지

Fig. 13. Load-settlement curves of different size of reinforcing piles

GJBGC4_2019_v35n1_17_f0014.png 이미지

Fig. 14. Kυr-settlement curves depending on different Kυe values

Table 1. Physical properties of soil

GJBGC4_2019_v35n1_17_t0001.png 이미지

Table 2. Properties of piles and raft

GJBGC4_2019_v35n1_17_t0002.png 이미지

Table 3. Loading level applied on pile foundation

GJBGC4_2019_v35n1_17_t0003.png 이미지

References

  1. Cho, J.Y. and Jeong, S.S. (2012), "Development of Three-dimentional Approximate Analysis Method for Piled Raft Foundation", J. of the Korean Geotechnical Society, Vol.28, No.4, pp.67-78. https://doi.org/10.7843/kgs.2012.28.4.67
  2. Choi, C.H., Lee, H.J., Choi, K.S., You, Y.C., and Kim, J.Y. (2017), "A Study of Prestressed Concrete Pile Stiffness for Structural Analysis of Condominium Remodeling with Vertical Story Extension", J. of the Korean Geotechnical Society, Vol.33, No.12, pp.81-92. https://doi.org/10.7843/KGS.2017.33.12.81
  3. Jeong, S.S., Lee, J.H., Park, J.J., Roh, Y.H., and Hong, M.H. (2017), "Analysis of Load Sharing Ratio of Piled Raft Foundation by Field Measurement", J. of the Korean Geotechnical Society, Vol.33, No.8, pp.41-52. https://doi.org/10.7843/KGS.2017.33.8.41
  4. Cho, S.H., Choi, K.S., Cho, S.D., You, Y.C., and Choi, C.H. (2014), "Experimental Study for Load Distribution Characteristic of Existing and Reinforcing Piles", J. of the Korean Geo-environmental Society, Vol.15, No.12, pp.87-95.
  5. Wang, C.C., Han, J.T., Jang, Y.E., Ha, I.S., and Kim, S.J. (2018), "Study on the Effectiveness of Preloading Method on Reinforcement of the Pile Foundation by 3D FEM Analysis", J. of the Korean Geotechnical Society, Vol.34, No.1, pp.47-57. https://doi.org/10.7843/KGS.2018.34.1.47
  6. Cho, J.Y. (2013), "Integrated design methods for piled raft foundations considering soil-structure interaction", ph.D. thesis, Yonsei University, Seoul, Republic of Korea.
  7. Lebeau, J.S. (2008), "FE-analysis of piled and piled raft foundation", Graz University of Technology. Project Report.
  8. Tschuchnigg, F. and Schweiger, H. F. (2013), "Comparison of Deep Foundation Systems Using 3D Finite Element Analysis Employing Different Modeling Techniques", Geotechnical Engineering Journal of the SEAGS & AGSSEA. Vol.44, No.3, pp.40-46.
  9. Burland, J. B., Broms, B. B., and De Mello, V.F.B. (1977), "Behaviour of Founadations and Structures", Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo. Vol.2, pp.495-549.
  10. Randolph, M. F. (1994), "Design Methods for Pile Groups and Piled Rafts", Proceedings of 13th ICSMFE, New Delhi, India. Vol. 5, pp.61-82.
  11. Katzenbach, R., Arslan, U., and Moormann, C. (2000), "Piled Raft Foundations Projects in Germany", Design applications of raft foundations, Hemsley, J. A. Editor, Thomas Telford, pp.323-392.
  12. Poulos, H. G. (2001), "Piled Raft Foundations: Design and Applications", Geotechnique, 51, pp.95-113. https://doi.org/10.1680/geot.51.2.95.40292
  13. Mandolini, A., Russo, G., and Viggiani, C. (2005), "Piled Foundations: Experimental Investigations, Analysis and Design", State-of-the-Art Rep. Proc., 16th ICSMGE, Osaka, Japan, Vol.1, pp.177-213.
  14. Reul, O. and Randolph, M.F. (2003), "Piled Rafts in Overconsolidated Clay-Comparison of In-situ Measurements and Numerical Analyses", Geotechnique, Vol.53, No.3, pp.301-315. https://doi.org/10.1680/geot.2003.53.3.301
  15. KICT (2013), "Development of Pre-loading Method for Reinforcement Piles of Apartment Remodeling (I)", KICT2013-260, KICT, pp. 23-26.
  16. MOLIT (2013), Housing Act, Korea Ministry of Land, Infrastructureand Transport, p.2.
  17. MOLIT (2014), Structural Standards for Condominium Remodeling with Vertical Extension, Korea Ministry of Land, Infrastructure and Transport.
  18. Das, B. M. (2015), Principles of Foundation Egineering, Cengage learning.
  19. Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice, 2nd ed, John Wiley and Sons, New York.
  20. Plaxis, B. V. (2005), PLAXIS User's manual.
  21. Cho, C.H. (2010), "Piling Engineering Practice", E&G book.
  22. KHS (2008), Korea Highway Bridge Design Standard, Explanation, pp.885-887.