• 제목/요약/키워드: Piezoresistive sensors

검색결과 84건 처리시간 0.023초

압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구 (The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor)

  • 심재준;한근조;한동섭;이성욱;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

주름구조를 적용한 저속 유속 센서 (Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection)

  • 최대근;이상훈
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.393-399
    • /
    • 2011
  • In this paper, we designed and fabricated the novel air flow sensor using air drag force, which can be applied to the low air flow detection. To measure the low air flow, we should enlarge the air drag force and the output signal at the given air flow. The paddle structure is applied to the device, and the device is vertically located against the air flow to magnify the air drag force. We also adapt the corrugation structure to improve the output signals on the given air velocity. The device structure is made up of the silicon nitride layer and the output signal is measured with the piezoresistive layer. The output signals from the corrugated device show the better measurement sensitivity and the response time than that of flat one. The repeated measurement also shows the stabilized signals.

건식식각 기술 이용한 실리콘 압력센서의 특성 (Characteristics silicon pressure sensor using dry etching technology)

  • 우동균;이경일;김흥락;서호철;이영태
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.137-141
    • /
    • 2010
  • In this paper, we fabricated silicon piezoresistive pressure sensor with dry etching technology which used Deep-RIE and etching delay technology which used SOI(silicon-on-insulator) wafer. We improved pressure sensor offset and its temperature dependence by removing oxidation layer of SOI wafer which was used for dry etching delay layer. Sensitivity of the fabricated pressure sensor was about 0.56 mV/V${\cdot}$kPa at 10 kPa full-scale, and nonlinearity of the fabricated pressure sensor was less than 2 %F.S. The zero off-set change rate was less than 0.6 %F.S.

수위, 온도, 전도도 측정을 위한 다기능 One-Chip 센서의 제조 (Fabrication of a multi-functional one-chip sensor for detecting water depth, temperature, and conductivity)

  • 송낙천;조용수;최시영
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.7-12
    • /
    • 2006
  • The multi-functional one-chip sensor has been fabricated to reduce output variation under various water environment. There were a temperature sensor, a piezoresistive type pressure sensor, and a electrode type conductivity sensor in the fabricated one-chip sensor. This sensor was measured water depth in the range of $0{\sim}180cm$, temperature in the range of $0{\sim}50^{\circ}C$, and salinity in the range of 0 $0wt%{\sim}5wt%$, respectively. Since the change of water depth in solution environment depends on various factors such as salinity, latitude, temperature, and atmospheric pressure, the water depth sensor is needed to be compensated. We tried to compensate the salinity and temperature dependence for the pressure in water by using lookup-table method.

Silicon Strain Gauge Load Cell for Weighting Disdrometer

  • Lee, Seon-Gil;Moon, Young-Soon;Son, Won-Ho;Sohn, Young-Ho;Choi, Sie-Young
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.321-326
    • /
    • 2013
  • In this paper, the usability of a compact silicon strain gauge load cell in a weighting disdrometer for measuring the impact load of a falling raindrop is introduced for application in a multi-meteorological sensor. The silicon strain gauge load cell is based on the piezoresistive effect, which has a high linearity output from the momentum of the raindrop and the simplicity of signal processing. The weighting disdrometer shows a high sensitivity of 7.8 mV/g in static load measurement when the diaphragm thickness of the load cell is $250{\mu}m$.

빔 위치변화에 따른 4빔 압저항형 실리콘 가속도 센서의 제조 및 특성비교 (Fabrication and Characteristics Comparison of Piezoresistive Four Beam Silicon Accelerometer Based on Beam Location)

  • 신현옥;손승현;최시영
    • 전자공학회논문지D
    • /
    • 제36D권7호
    • /
    • pp.26-33
    • /
    • 1999
  • 4빔 브릿지형 압저항형 실리콘 가속도 센서에서 빔의 위치가 가속도 센서의 특성에 어떤 영향을 주는지 조사하기 위해서 빔의 위치가 서로 다른 3가지 형태의 가속도 센서를 FEM(finite element method)을 사용하여 해석하고, SDB(silicon direct bonding) 웨이퍼를 사용하여 RIE(reactive ion etching)와 KOH(potassium hydroxide) 애칭 공정으로 제조하였다. 세가지 형태의 가속도 센서에 대한 FEM 해석 경과, 첫 번째 공진 주파수와 Z축 감도는 세구조 모두 같게 나타났으나, 두 번째와 세 번째의 공진 주파수 및 X, Y축의 감도는 다른 것으로 나타났다. 제조된 가속도 센서의 특성을 살펴볼 때, 세 가지 형태의 센서는 비록 첫 번째 공진 주파수와 Z축 감도가 정확하게 일치하지는 않았지만, 첫 번째 공진 주파수는 1.3 ~ 1.7 KHz, Z축 감도는 5 V 인가시 180 ~ 220 lN/G, 타축감도는 1.7 ~ 2 %를 가지는 것으론 나타났다.

  • PDF

Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity

  • Je, Chang Han;Choi, Chang Auck;Lee, Sung Q;Yang, Woo Seok
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.685-694
    • /
    • 2016
  • A surface micromachined piezoresistive pressure sensor with a novel internal substrate vacuum cavity was developed. The proposed internal substrate vacuum cavity is formed by selectively etching the silicon substrate under the sensing diaphragm. For the proposed cavity, a new fabrication process including a cavity side-wall formation, dry isotropic cavity etching, and cavity vacuum sealing was developed that is fully CMOS-compatible, low in cost, and reliable. The sensitivity of the fabricated pressure sensors is 2.80 mV/V/bar and 3.46 mV/V/bar for a rectangular and circular diaphragm, respectively, and the linearity is 0.39% and 0.16% for these two diaphragms. The temperature coefficient of the resistances of the polysilicon piezoresistor is 0.003% to 0.005% per degree of Celsius according to the sensor design. The temperature coefficient of the offset voltage at 1 atm is 0.0019 mV and 0.0051 mV per degree of Celsius for a rectangular and circular diaphragm, respectively. The measurement results demonstrate the feasibility of the proposed pressure sensor as a highly sensitive circuit-integrated pressure sensor.

송출공의 회전이 송출계수와 압력계수에 미치는 영향 (The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient)

  • 하경표;구남희;고상근
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

스테인레스 봉입형 반도체 압력센서의 제작 및 그 특성 (Construction and Characterization of the Stainless Steel Isolated Type Semiconductor Pressure Sensor)

  • 김우정;조용수;황정훈;최시영
    • 센서학회지
    • /
    • 제11권3호
    • /
    • pp.138-144
    • /
    • 2002
  • 스테인레스 봉입형 압력센서를 제작하기 위하여 먼저 반도체 제조 및 식각 공정을 통하여 반도체 압력센서를 제작하였다 그리고 이를 glass molding된 스테인레스 housing에 올려놓고 $50\;{\mu}m$ 두께의 스테인레스 박판을 용접한 후 실리콘 오일을 채워 넣고 봉입하여 압력 범위 10 bar 센서를 완성하였다. 이와 같이 제작한 센서와 XTR105 발신기 전용 회로를 결합하여 $4{\sim}20\;mA$ 출력의 압력 발신기를 제작하고 그 특성을 조사하였다. 온도 보상 전 정확도는 ${\pm}5%$ FS이었으나 보상 후 정확도 ${\pm}1%$ FS로 개선되었다.

CrN박막 세라믹 압력센서 (Ceramic Pressure Sensors Based on CrN Thin-films)

  • Chung, Gwiy-Sang;Seo, Jeong-Hwan;Ryu, Gl-kyu
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.573-576
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromium nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5∼25 %)Na$_2$). The deposited CrN thin-films with thickness of 3577${\AA}$ and annealing conditions(300$^{\circ}C$, 48 hr) in Ar-10 % N$_2$deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho$=1147.65 ${\mu}$$\Omega$cm, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF