DOI QR코드

DOI QR Code

Silicon Strain Gauge Load Cell for Weighting Disdrometer

  • Lee, Seon-Gil (Dept. of Sensor and Display Eng., Kyungpook National University) ;
  • Moon, Young-Soon (Dept. of Sensor and Display Eng., Kyungpook National University) ;
  • Son, Won-Ho (School of Electronics Eng., Kyungpook National University) ;
  • Sohn, Young-Ho (Dept. Of Computer Eng., Yeungnam University) ;
  • Choi, Sie-Young (School of Electronics Eng., Kyungpook National University)
  • Received : 2013.09.06
  • Accepted : 2013.09.24
  • Published : 2013.09.30

Abstract

In this paper, the usability of a compact silicon strain gauge load cell in a weighting disdrometer for measuring the impact load of a falling raindrop is introduced for application in a multi-meteorological sensor. The silicon strain gauge load cell is based on the piezoresistive effect, which has a high linearity output from the momentum of the raindrop and the simplicity of signal processing. The weighting disdrometer shows a high sensitivity of 7.8 mV/g in static load measurement when the diaphragm thickness of the load cell is $250{\mu}m$.

Keywords

References

  1. R. Bagree, Characterization and design of a readout circuit for a piezoelectric-based acoustic disdrometer, Delft University of Technology, 2012.
  2. N. M. White and J. E. Brignell, "A planar thick film load cell", Sens. Actuator A-Phys,.Vol. 25-27, pp. 313- 319, 1991.
  3. Y. Kim, S. Kwon, "Resistivity dependence of gauge factor of polysilicon strain gauge", Micro Nano Lett., Vol. 5, pp. 189-192, 2010. https://doi.org/10.1049/mnl.2010.0031
  4. A. Yasukawa, M. Shimazoe, and Y. Matsuoka, "Simulation of circular silicon pressure sensors with a center boss for very low pressure measurement", IEEE Trans. Electron Devices, Vol. 36, No. 7, pp. 1295-1302, 1989. https://doi.org/10.1109/16.30935
  5. Y. S Moon, S. G Lee, S. H. Ryu, and S. Y. Choi, "The silicon type load cell with SUS630 diaphragm", J. Sensor Sci. & Tech., Vol. 20, No. 3, pp. 213-218, 2011. https://doi.org/10.5369/JSST.2011.20.3.213
  6. S. G. Lee, Y. S. Moon, W. H. Son, S. Y. Kwon, and S. Y. Choi, "The design considerations of the silicon strain gauges on a metal diaphragm for improving the sensitivity and accuracy of the pressure sensor", ICEIC pp. 664-665, 2013.
  7. Y. Kanda, "A graphical representation of the piezoresistance coefficient in silicon", IEEE Tran. Electron Devices, Vol. ED-29, No. 1, pp. 64-70, 1982.
  8. J. D. Dally and W. F. Riley, Experimental Stress Analysis, Edited by B. J. Clark, McGraw-Hill Kogakusha, Chapter 8, pp. 217-272, 1978.
  9. R. Gunn and G. D. Kinzer, "The terminal velocity of fall for waterdroplets in stagnant air", J. Meteor., Vol. 6, pp. 243-248, 1949. https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
  10. M. A. Nearing, J. M. Bradford, and R. D. Holtz, "Measurement of force vs. time relations for waterdrop impact", Soil Sci. Soc. Am. J., Vol. 50, No. 6, pp. 1532-1536, 1986. https://doi.org/10.2136/sssaj1986.03615995005000060030x
  11. K. V. Beard and C. Chuang, "A new model for the equilibrium shape of raindrops", J. Atmos. Sci, Vol. 44, No. 11, pp. 1509-1524, 1987. https://doi.org/10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2