• Title/Summary/Keyword: Piezoelectric valve

Search Result 48, Processing Time 0.03 seconds

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

On the Pressurization Characteristics of Small Piezoelectric Hydraulic Pump for Brake System (브레이크용 소형 압전유압펌프 가압 동특성 해석)

  • Jeong, Min-Ji;Hwang, Jai-Hyuk;Bae, Jae-Sung;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.963-970
    • /
    • 2015
  • In this study, the pressurization characteristics of the small piezoelectric hydraulic pump for a brake system has been analyzed through modeling the full hydraulic pump components; the pump chamber, check valve, pump load, pump drive controller etc. To analyze the pressurization characteristics, the process of charging pressure in the chamber with stacked-layer piezoelectric actuator were firstly modeled. Secondly, the flow coefficient of the check valve in terms of valve opening has been calculated after computational fluid dynamics analysis, such as the pressure distribution around check valve and the flow rate, was conducted. Also the pump driving controller, which controls the input voltage to the actuator, was designed to make the load pressure follow the input pressure command. The simulation results find that it takes about 0.03ms to reach the operating load pressure required for the braking system. The simulation result was also verified through comparison to the result of the pump performance test.

Pressure Regulator for Piezoelectric Valve (압전 밸브용 압력 레귤레이터)

  • Yun, S.N.;Kim, C.Y.;Seo, S.W.;Park, J.H.;Ham, Y.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2006
  • The pressure regulator which is used for controlling the reducing pressure in the piezoelectrically driven pneumatic valve has been studied. The pneumatic valve of this study object is 2-stage type and consists of a piezoelectric actuator, a controller, a poppet valve and a pressure regulator. Nominal flow of 50 lpm, maximum operating pressure of 0.9MPa and frequency characteristic of 10Hz and over are required in this pneumatic valve, but the pressure regulator is needed because piezoelectric actuator has no ability to control the pressure of 0.9MPa directly. In this study, bimorph type PZT actuator of $25.2mm(L){\times}7.2mm(W){\times}0.5mm(H)$ with constant of $-220{\times}10-12$ CN-1 was proposed and investigated. Maximum operating force of 0.052 N and maximum displacement of $63{\mu}m$ were gotten from the fabricated PZT actuator. From the analysis results, the orifice diameter of 0.6mm for a piezoelectric actuator was derived and then the pressure regulator which can be operated under 0.15 MPa easily was designed and manufactured. Performance and effects of design parameters were simulated by the Simulink of Matlab software, and it was confirmed that the performance characteristics of manufactured pressure regulator are superior in the common use pressure range of 0.5 MPa to 0.7 MPa. The results show that the proposed pressure regulator is suitable for the pneumatic valve with a PZT actuator.

  • PDF

Effect of Inlet and Outlet Position on the Pumping Characteristics of a Diffuser/Nozzle Based Piezoelectric Micropumps (디퓨저/노즐을 이용한 압전형 마이크로 펌프의 펌핑 특성에 미치는 입출구 위치의 영향)

  • Jang, Hun-Hee;Kim, Chang-Nyung;Jung, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.411-417
    • /
    • 2007
  • This study has been conducted to investigate pumping characteristics of diffuser/nozzle based piezoelectric micropumps. The micropumps include a piezo disk (an actuator), a chamber and a set of diffuser and nozzle. Flow in the current micropumps is controlled by a set of diffuser and nozzle, not by a nap valve. The diffuser/nozzle based micropumps are more reliable in operation and are easier in manufacturing than the flap valve based micropumps. The flow rates of the piezoelectric micropumps have been closely analyzed with a numerical calculation. It has been found that the positions of the inlet and outlet of the micropump can influence the performance of the diffuser/nozzle based piezoelectric micropumps. This study may provide fundamental understanding for the design and analysis of the piezoelectric micropumps.

Pressurization Characteristics of Piezoelectric-Hydraulic Pump Adopting a Ball-Thin Plate Spring Type Check Valve (볼-박판 스프링 형 체크밸브가 적용된 압전유압펌프의 가압 특성)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • In this study, a new check valve was studied to improve the load pressure of a brake system with a small piezoelectric-hydraulic pump. During the pressurization process, the steady-state pressure at the load is affected by the ratio of the cross-sectional area of the check valve the chamber pressure and load pressure. Since the flow path cover of the check valve is made wider than the cross-sectional area of the output flow to prevent backflow, a method of reducing the area ratio is proposed for a higher load pressure by mounting an additional mass to a thin plate spring type check valve. To identify the effect of mounting an additional mass to the existing check valve on the load pressure, a simple brake system with a small piezoelectric-hydraulic pump was modeled using a commercial code AMESim. The AMESim modeling was verified by comparing the simulation results with the experimental results of the pump the existing check valve. The additional mass was added to the verified AMESim modeling and higher load pressure was able to be obtained through simulation. The 35% performance improvement in load pressure identified by carrying out pressurization test of the brake system after adopting the new check valve the small piezoelectric-hydraulic pump.

Micro Valve with Functional Actuator (기능성 액츄에이터를 이용한 마이크로 밸브)

  • Yun, So-Nam;Ham, Young-Bog;Lee, Kyung-Woo;Kanda, Kunio
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.951-955
    • /
    • 2004
  • Piezoelectric(PZT) actuator can substitute for solenoid which is used in fluid control field because it has faster response times and no possibility of explosion. Besides, it is available in a high temperature and it has low energy consumption. In this study, pneumatic micro valve, bimorph type PZT actuator using the softner type PZT, carbon plate as a shim and its controller circuit were suggested and investigated. Performance tests and characteristics analysis, such as displacement, force, hysteresis and frequency properties, were carried out. The displacement of the actuator measured at the end point was 63 ${\mu}m$., force of the actuator was 0.052 N and maximum operating frequency was 15Hz. Also, characteristics of the micro valve with PZT actuator were evaluated in a testing system. The results show that the suggested PZT actuator is suitable for micro valve.

  • PDF

Fabrication of MCA Valve For MEMS (MEMS용 적층형 압전밸브의 제작)

  • Kim, Jae-Min;Yun, Jae-Young;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.129-132
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}\;pa{\cdot}m^3/cm^2$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

  • PDF

Design, Fabrication and Characteristics of a MCA Valve (적층형 압전밸브의 설계, 제작 및 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin;Jeong, Soon-Jong;Song, Jae-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 seem at a supplied voltage of 100 V with a 50% duty cycle, maximum non-linearity was 2.24% FS and leak rate was $3.03{\times}10^{-8}pa{\codt}m^{3}/cm^{2}$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF