• Title/Summary/Keyword: Piezoelectric energy harvesting

Search Result 237, Processing Time 0.026 seconds

An Estimation of Piezoelectric Power as Connection Methods of Piezoelectric Ceramic (압전세라믹 연결방식에 따른 전력생산 평가 연구)

  • Kwon, Soo-Ahn;Lee, Jae-Jun;Moon, Hak-Yong;Ryu, Seung-Ki
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2012
  • Natural disasters such as hurricanes, floods frequently occurs in the world. The cause of the natural disasters that occurs due to global warming because of increasing of global greenhouse gas emissions. To prevent the global warming, lots of researchers are studying renewable energy area. In order to protect grobal warming, government is trying to reduce green gas emissions under "Low Carbon Green Growth Policy" and investing climiate-friendly industries such as renewable energy harvesting. Research team is developing a renewable energy system that harvests mechanical energy imparted to road from driving vehicles and generates it into renewable electricity. This paper presents the research results of size effect of the piezoelectric ceramic and connection of piezoelectric ceramics. Power characteristics of piezoelectric ceramic as function of experimental variables were measured and analyzed.

Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite (유기-무기 하이브리드 압전 나노복합체 기반의 플렉서블 에너지 하베스터 제작 및 발전성능 평가)

  • Kwon, Yu Jeong;Hyeon, Dong Yeol;Park, Kwi-Il
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.371-377
    • /
    • 2019
  • A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.

Design and Fabrication of Piezoelectric Generator Using Piezoelectric Ceramics (원판형 압전 세라믹을 이용한 압전 발전 장치의 설계 및 제작)

  • Jun, Ho-Ik;Jeoung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.315-316
    • /
    • 2008
  • On this paper, piezoelectric generators using piezoelectric ceramics were designed and fabricated. Generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Generator converts wasting mechanical energy to electrical energy. Output voltage was increased when thickness of ceramic and displacement of vibration were increased. Temperature of the ceramic was increased when it generates, but the temperature rising was saturated at certain temperature.

  • PDF

Self-powered Sensors based on Piezoelectric Nanogenerators

  • Rubab, Najaf;Kim, Sang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.293-300
    • /
    • 2022
  • Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.

Design of a Bimorph Piezoelectric Energy Harvester for Railway Monitoring

  • Li, Jingcheng;Jang, Shinae;Tang, Jiong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.661-668
    • /
    • 2012
  • Wireless sensor network is one of prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree-of-freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from $2.06m/s^2$ base excitation compared to stand-alone piezoelectric energy harvester without tip mass.

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode (PZT 라미네이트 Trapezoidal Piezoelectric Cantilever Generator의 모드(3-1, 3-3)별 에너지 하베스팅 특성 비교)

  • Lee, Min-seon;Kim, Chang-il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.768-775
    • /
    • 2017
  • Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.