Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.12.768

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode  

Lee, Min-seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Chang-il (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji-sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Park, Woon-ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Hong, Youn-woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong-hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Jeong-ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Park, Yong-ho (Department of Material Science and Engineering, Pusan University)
Jeong, Young-hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.12, 2017 , pp. 768-775 More about this Journal
Abstract
Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.
Keywords
Piezoelectric; Laminate; Vibration mode; Energy harvesting; Cantilever generator;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. B. Ayed, F. Najar, and A. Abdelkefi, Proc. 2009 3rd International Conference on Signals, Circuits and Systems (SCS) (IEEE, Medenine, Tunisia, 2009) p. 1. [DOI: https://doi.org/10.1109/ICSCS.2009.5412553]
2 D. Benasciutti, L. Moro, S. Zelenika, and E. Brusa, Microsyst. Technol., 16, 657 (2010). [DOI: https://doi.org/10.1007/s00542-009-1000-5]   DOI
3 V. Annapureddy, H. Y. Lee, W. H. Yoon, H. J. Woo, J. H. Lee, H. Palneedi, H. J. Kim, J. J. Choi, D. Y. Jeong, S. N. Yi, and J. H. Ryu, Appl. Phys. Lett., 109, 093901 (2016). [DOI: https://doi.org/10.1063/1.4962047]   DOI
4 C. M. Kim, C. I. Kim, J. H. Lee, J. H. Paik, J. H. Cho, M. P. Chun, Y. H. Jeong, and Y. J. Lee, Trans. Electr. Electron. Mater., 11, 206 (2010). [DOI: https://doi.org/10.4313/TEEM.2010.11.5.206]   DOI
5 B. Tian, H. Li, N, Yang, H. Liu, and Y. Zhao, Proc. 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, Los Angeles, CA, USA, 2017) p. 185 [DOI: https://doi.org/10.1109/NEMS.2017.8017002]
6 Y. Chen, B. Lu, D. Ou, and X. Feng, Sci. China: Phys., Mech. Astron., 58, 594601 (2015). [DOI: https://doi.org/10.1007/s11433-015-5692-5]   DOI
7 R. Paradies and P. Ciresa, Smart Mater. Struct., 18, 035010 (2009). [DOI: https://doi.org/10.1088/0964-1726/18/3/035010]   DOI
8 H. Yu, J. Zhou, L. Deng, and Z. Wen, Sensors, 14, 3323 (2014). [DOI: https://doi.org/10.3390/s140203323]   DOI
9 C. H. Nguyen, U. Hanke, and E. Halvorsen, Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016 (SPIE, Las Vegas, Nevada, United States, 2016) p. 97991C. [DOI: https://doi.org/10.1117/12.2218843]
10 H. A. Sodano, J. Lloyd, and D. J. Inman, Smart Mater. Struct., 15, 1211 (2006). [DOI: https://doi.org/10.1088/0964-1726/15/5/007]   DOI
11 Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, Renew. Sust. Energ. Rev., 26, 837 (2013). [DOI: https://doi.org/10.1016/j.rser.2013.06.023]   DOI
12 M. A. Lazar, D. Al-Masri, D. R. MacFarlane, and J. M. Pringle, Phys. Chem. Chem. Phys., 18, 1404 (2016). [DOI: https://doi.org/10.1039/C5CP04305K]   DOI
13 V. Kuhn, C. Lahuec, F. Seguin, and C. Person, IEEE Trans. Microwave Theory Tech., 63, 1768 (2015). [DOI: https://doi.org/10.1109/TMTT.2015.2416233]   DOI
14 M. Song, Y. Zhang, M. Peng, and J. Zhai, Nano Energy, 6, 66 (2014). [DOI: https://doi.org/10.1016/j.nanoen.2014.02.009]   DOI
15 Q. Zhao, Y. Liu, L. Wang, H. Yang, and D. Cao, Int. J. Pavement Res. Technol., In Press (2017). [DOI: https://doi.org/10.1016/j.ijprt.2017.08.001]
16 S. Leadenham and A. Erturk, Nonlinear Dyn., 79, 1727 (2015) [DOI: https://doi.org/10.1007/s11071-014-1770-x]   DOI
17 H. Li, C. Tian, and Z. D. Deng, Appl. Phys. Rev., 1, 041301 (2014) [DOI: https://doi.org/10.1063/1.4900845]   DOI
18 V. Annapureddy, M. Kim, H. Palneedi, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, and J. Ryu, Adv. Energy Mater., 6, 1601244 (2016). [DOI: https://doi.org/10.1002/aenm.201601244]   DOI
19 E. K. Reily, F. Burghardt, R. Fain, and P. Wright, Smart Mater. Struct., 20, 125006 (2011). [DOI: https://doi.org/10.1088/0964-1726/20/12/125006]   DOI
20 R. Hosseini and M. Hamedi, J. Micromech. Microeng., 25, 125008 (2015). [DOI: https://doi.org/10.1088/0960-1317/25/12/125008]   DOI