• Title/Summary/Keyword: Piezoelectric characteristic

Search Result 175, Processing Time 0.035 seconds

Radial Vibration Analysis of Cylindrical Piezoelectric Transducers Considering Anisotrpy (이방성을 고려한 원통형 압전 변환기의 반경방향 진동 특성 해석)

  • Lee, Jung-Gu;Kim, Jin-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.274-280
    • /
    • 2004
  • This paper presents the analysis fur the radial vibration characteristics of cylindrical piezoelectric transducers. Taking into account the piezoelectric anisotropy, the differential equations of piezoelectric radial motion have been derived in terms of radial displacement and electric potential. Applying mechanical and electric boundary conditions has yielded a characteristic equation for radial vibration. Numerical analysis also has been carried out by using the finite element method. Theoretical calculations of the fundamental natural frequency have been compared with the experimental observations for transducers of several sizes. Comparison with the previous report of theoretical analysis simplifying the piezoelectric anisotropy into isotropy concludes that isotropic analysis is a reasonable process to predict the vibration characteristics of piezoelectric transducers.

Micro Pattern Control of Metal Printing by Piezoelectric Print-head (압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어)

  • Yoon, Shin-Yong;Choi, Geun-Soo;Baek, Soo-Hyun;Chang, Hong-Soon;Seo, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

Characteristics of A Multilayer Piezoelectric Transformer Using PAN-PZT Ceramics (PAN-PZT계 세라믹스를 이용한 적층형압전변압기의 특성)

  • 박타리;이동균;최지원;신용덕;김현재;고태국;윤석진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.143-146
    • /
    • 2002
  • The characteristics of a multilayer piezoelectric transformer were investigated using 0.05Pb(A $l_{0.5}$N $b_{0.5}$) $O_3$-0.95Pb(Z $r_{0.52}$ $Ti_{0.48}$) $O_3$+0.9wt%N $b_2$ $O_{5}$+0.5wt%Mn $O_2$+0.04wt% $V_2$ $O_{5}$ ceramics. The multilayer piezoelectric trans formers were developed for voltage step-up. The multilayer ceramic technology was applied in piezoelectric transformer. The electrical characteristics of the piezoelectric transformer (33x8.5x1mm) has the efficiency of above 85%, step-up ratio of 70 under the 130 kΩ load, and driving frequency of 93.5kHz, respectively.ctively.y.y.

  • PDF

Resonance Characteristics of a 1-3 Piezoelectric Composite Transducer of Circular Arch Shape (원호형 1-3 압전 복합재 변환기의 공진 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2009
  • This paper presents a theoretical approach to calculate the resonant frequency of a thickness vibration mode in the radial direction for a 1-3 piezoelectric composite transducer of circular arch shape. For the composite transducer composed of a piezoelectric ceramic and a polymer, vibration parameters were derived according to the volume ratio of a ceramic, and a vibration characteristic equation was derived from the piezoelectric governing equations with adequate boundary conditions. The fundamental resonant frequencies were calculated numerically and verified by comparing them with those obtained from the finite element analysis and the experiment. The volume ratio and the thickness are more substantial than the curvature radius to determine the fundamental resonant characteristics, and the fundamental resonant frequency becomes higher for the larger volume ratio of the piezoelectric ceramic and for the smaller thickness.

Radial vibration behaviors of cylindrical composite piezoelectric transducers integrated with functionally graded elastic layer

  • Wang, H.M.;Wei, Y.K.;Xu, Z.X.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.753-765
    • /
    • 2011
  • The radial vibration behaviors of a circular cylindrical composite piezoelectric transducer (CPT) are investigated. The CPT is composed of a piezoelectric ring polarized in the radial direction and an elastic ring graded in power-law variation form along the radial direction. The governing equations for plane stress state problem under the harmonic excitation are derived and the exact solutions for both piezoelectric and functionally graded elastic rings are obtained. The characteristic equations for resonant and anti-resonant frequencies are established. The presented methodology is fit to carry out the parametric investigation for composite piezoelectric transducers (CPTs) with arbitrary thickness in radial direction. With the aid of numerical analysis, the relationship between the radial vibration behaviors of the cylindrical CPT and the material inhomogeneity index of the functionally graded elastic ring as well as the geometric parameters of the CPTs are illustrated and some important features are reported.

Precision Position Control of a Piezoelectric Actuator Using Neural Network (신경 회로망을 이용한 압전구동기의 정밀위치제어)

  • Kim, Hae-Seok;Lee, Byung-Ryong;Park, Kyu-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.9-15
    • /
    • 1999
  • A piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, the piezoelectric actuator lacks in repeatability because of its inherently high hysteresis characteristic between voltage and displacement. In this paper, a controller is proposed to compensate the hysteresis nonlinearity. The controller is composed of a PID and a neural network part in parallel manner. The output of the PID controller is used to teach the neural network controller by the unsupervised learning method. In addition, the PID controller stabilizes the piezoelectric actuator in the beginning of the learning process, when the neural network controller is not learned. However, after the learning process the piezoelectric actuator is mainly controlled by the neural netwok controller. In this paper, the excellent tracking performance of the proposed controller was verified by experiments and was compared with the classical PID controller.

  • PDF

Vibration Characteristics Analysis of a Piezoelectric Disc or Torsional Transducers (비틀림 진동 변환기용 압전 원판의 진동특성 해석)

  • Lee, Jung-Hyun;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1416-1421
    • /
    • 2005
  • This paper presents an analytical approach for the vibration characteristics of a piezoelectric disc for torsional vibration transducers. The characteristic equation of the piezoelectric annular disc has been derived from Gibbs' free energy equations and mechanical and electrical equilibrium. With an anisotropic material properties of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results have been compared with the results obtained by the finite element analysis and experiments and have confirmed the validity of the theoretical analysis.

Radial Vibration of Cylindrical Piezoelectric Transducers (원통형 압전 변환기의 반경방향 진동 특성)

  • 김진오;정형곤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.247-252
    • /
    • 2001
  • The paper deals with a theoretical study on the redial vibration of cylindrical piezoelectric transducers The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electrical potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration. Numerical resutls of the fundamental natural frequency have been compared with experimental observations for the transducers of several sizes, and have shown a good agreement.

  • PDF

Radial Vibration of Cylindrical Piezoelectric Transducers (원통형 압전 변환기의 반경방향 진동 특성)

  • 김진오;정형곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1138-1143
    • /
    • 2001
  • The paper deals with a theoretical study on the radial vibration of cylindrical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electrical potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration. Numerical results of the fundamental natural frequency have been compared with experimental observations for the transducers of several sizes, and have shown a good agreement.

  • PDF

Generating Characteristics of Cymbal Type Piezoelectric Transducer according to Change of Cymbal Cap (심벌캡 변화에 따른 심벌타입 압전 트랜스듀서의 발전특성)

  • Park, Choong-Hyo;Kim, Jong-Wook;Chong, Hyon-Ho;Jeong, Seong-Su;Kim, Myung-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.318-318
    • /
    • 2010
  • In this paper, we studied generating characteristic of cymbal type piezoelectric transducer according to change of cymbal cap. The transducer is composed of circular piezoelectric ceramic and two elastic bodies which are shaped as cymbal. Two elastic bodies are attached to upper and bottom of the ceramic. Principle of the transducer is to generate expanded displacement because vertical stress is transformed into horizontal stress by slope angle of elastic bodies. The transducer also has advantage of high durability by the angle of elastic bodies. In this study, each parameter was chosen, and then generating characteristics were analyzed by FEM program. The parameters were slope angle of cymbal cap (theta), cap height (h) and cap inner diameter(d). The model that had generating characteristic Of high voltage was chosen by results of the analysis. Besides, maximum vertical displacements according to change of vertical stress were analyzed by structural analysis in order to find out relation between the maximum vertical stress which can prevent from ceramic damage and conditions of each cap.

  • PDF