• Title/Summary/Keyword: Piezoelectric Sensors

Search Result 395, Processing Time 0.023 seconds

Electrical Properties of 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE Composites (스마트 페인트 센서용 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE 복합소재 제조 및 전기적 특성에 관한 연구)

  • Sung Jae Hyoung;Eun Seo Kang;Yubin Kang;Chae Ryeong Kim;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.433-438
    • /
    • 2024
  • Piezoelectric ceramics play an important role in various electronic applications. However, traditional ceramics are difficult to be used in some complicated structures, due to their low flexibility and high brittleness. To solve this problem, this study prepared and investigated ceramic/polymer composites that can utilize a good flexibility of polymers. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23) ceramics were selected to fabricate the composites. Ceramic/polymer composites were prepared using various volume fractions of BNST23 ceramics. The distribution of piezoceramic particles in BNST23/PVDF-TrFE composites was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the composites were significantly influenced by the volume fraction of the piezoelectric ceramics. As a result, the highest piezoelectric constant (d33) of 56 pC/N was obtained in a composites with 70% volume fraction of BNST23 ceramics. Accordingly, it is expected that BNST23/PVDF-TrFE composites can be applied to various sensor applications.

Mathematical modeling of actively controlled piezo smart structures: a review

  • Gupta, Vivek;Sharma, Manu;Thakur, Nagesh
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.275-302
    • /
    • 2011
  • This is a review paper on mathematical modeling of actively controlled piezo smart structures. Paper has four sections to discuss the techniques to: (i) write the equations of motion (ii) implement sensor-actuator design (iii) model real life environmental effects and, (iv) control structural vibrations. In section (i), methods of writing equations of motion using equilibrium relations, Hamilton's principle, finite element technique and modal testing are discussed. In section (ii), self-sensing actuators, extension-bending actuators, shear actuators and modal sensors/actuators are discussed. In section (iii), modeling of thermal, hygro and other non-linear effects is discussed. Finally in section (iv), various vibration control techniques and useful software are mentioned. This review has two objectives: (i) practicing engineers can pick the most suitable philosophy for their end application and, (ii) researchers can come to know how the field has evolved, how it can be extended to real life structures and what the potential gaps in the literature are.

A Study on the Measurement of Stress Intensity Factors for the Fatigue Crack Propagation (피로 균열 진전에 따른 응력확대계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. In this respect, fatigue crack detection and structural health assessment are very important. Currently, various smart materials are used for detecting fatigue crack and measurement of SIFs(Stress Intensity Factors). So, this paper presented a measurement of SIFs using MFC(Micro Fiber Composite) sensor which is the one of the smart material. MFC sensor is more flexible, durable and reliable than other smart materials. The SIFs of Mode I(K I) as well as Mode II(K II) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results.

Local/Global Structural Health Monitoring System by means of Piezoelectric Sensors (압전센서를 이용한 구조물 국부/광역 손상 진단 시스템)

  • Kim, Byung-Soo;Kywon, Hyuck-Sang;Kim, Jin-Wook;Roh, Yong-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.2-5
    • /
    • 2009
  • 본 논문에서는 오실레이터 센서와 램파 센서를 결합하여 구조물 손상 진단을 위한 통합된 압전 센서 시스템을 제안한다. 구조물 손상으로 인한 공진주파수 변화를 관측할 수 있는 오실레이터 센서는 손상 정도에 민감하게 반응하고 구조가 단순한 장치이지만 측정 범위가 센서 주위로 제한되는 특성을 가진다. 반면에 램파를 이용한 진단 시스템은 원거리에 위치한 구조물의 손상부를 감지하기에 유용하다. 본 논문에서는 오실레이터 센서를 이용한 취약 지점의 국부적인 손상 진단 방식과 램파를 이용한 광역적인 손상 진단 방식을 결합하여 각 시스템의 장점들을 활용할 수 있는 센서 시스템의 적용가능성을 연구하였다. PZT소자를 알루미늄 판에 적용하여, 알루미늄판의 손상 정도에 따른 오실레이터 공진주파수의 변화와 램파 신호의 Time of flight, 그리고 진폭의 변화를 이용하여 구조물 손상형태의 판별 가능성을 제시하고 실험을 통하여 그 타당성을 검증하였다.

  • PDF

Acoustic Characteristics Analysis of piezoelectric Underwater Acoustic Sensors Using Finite Element Method. (유한요소법을 이용한 압전 수중음향센서의 음향특성 해석)

  • Son Sun Bong;Kim Jae Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.253-256
    • /
    • 2000
  • 본 연구에서는 유한요소법(FEM)을 이용하여 압전 수중음향센서의 모델링 및 음향특성을 해석하였다. 압전 복합구조 수중음향센서의 해석에서 기본적인 압전-탄성 구조물과 유체-구조물의 연성해석을 위한 유한요소 정식화를 하였으며 무한영역의 음향유체를 처리하기 위하여 IWEE(Infinite Wave Envelop Element)를 도입하였다. Topilz형 수중음향센서를 수중 산란체로 볼 경우 입사파가 산란체의 표면을 가진할 때 산란체로부터 발생되는 산란파는 IWEE로 인하여 무한 유체영역에서의 산란파의 감소특성을 갖게되어 무한영역을 유한영역으로 나눈 인위적인 경계에서 반사가 일어나지 않게 되므로 산란파의 음압을 정확히 구할 수 있었다. 또한, 이러한 산란해석을 바탕으로 입사파에 대한 음향센서 내부의 전기적 응답특성인 RVS(Receiving Voltage Signal)를 구하였다. 이러한 일련의 연구 과정들은 소나(SONAR) 시스템을 정확히 해석하고 음향특성을 예측하는 데 큰 도움이 될 것이다.

  • PDF

An automatic mask alignment system using moire sensors

  • Furuhashi, Hideo;Uchida, Yoshiyuki;Ohashi, Asao;Watanabe, Shigeo;Yamada, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.545-549
    • /
    • 1993
  • an alignment system in the X-and Y-directions an X-Y-.theta. stage driven by piezoelectric actuators is presented. A pair of quadruple gratings and a quadruple photo-detector are used. The difference between the two 0-th order moire signals in reflection with a relative spatial phase of 180.deg. is used in each direction to control the alignment of the X-Y-.theta. stage. The stage is aligned at the position where the difference is zero. The quadruple gratings are 10 mm * 10 mm, and of a binary square-type with a 1/2 duty cycle. Their pitches are 16 .mu.m. Alignment accuracy of .+-.20nm was obtained in this system.

  • PDF

High-Velocity Impact Damage Detection of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals (압전필름센서 신호를 이용한 Gr/Ep 복합재 적층판의 고속충격 손상탐지)

  • Kim, Jin-Won;Kim, In-Gul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.13-16
    • /
    • 2005
  • The mechanical properties of composite materials may degrade severely in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause sever damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PYDF(polyvinylidene fluoride) film sensors and strain gages were used for monitoring impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research demonstrate how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composites.

  • PDF

Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator (압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어)

  • 권대규;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

Implementation of the Pulse Wave Measurement System Using Bipolar Biased Head on Mode of the Hall Sensor (홀 센서의 양극 바이어스 수직모드를 이용한 맥파측정시스템 구현)

  • Jin, Sang-Gon;Kim, Myoung-Nam
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.322-328
    • /
    • 2011
  • There are many ways to detect the heart rate non-invasively such as ECG, PPG, strain gauge, and pressure sensor. In this paper, the pulse wave measurement system using bipolar biased head on mode of the Hall sensor is proposed for measuring the radial artery pulse. TMS320F2812 was used to implement the proposed system and a portable wireless network(zig-bee) was used to show the experimental result. It was confirmed from experiment that the performance of the implemented system was more stable and faster than PPG sensor or piezoelectric film pressure sensor.

A Study on the Analysis of Odorants using Six Channel Piezoelectric Crystals (6채널 압전소자를 이용한 냄새인식에 관한 연구)

  • Park, Ok-Soon;Choi, Yong-Sung;Chang, Sang-Mok;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.757-758
    • /
    • 1992
  • At-cut quarts crystal has been applied as chemical vapour sensors. The responses of quartz crystal at 9 MHz coated with various lipids were determined for organic gases which showed different affinities for each lipid. The identification of odorants depending on the species of lipid used for coating is discussed in terms of the normalized resonant frequency shift pattern.

  • PDF