• Title/Summary/Keyword: Piezoelectric Materials

Search Result 930, Processing Time 0.021 seconds

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Electrical and Magnetical Characteristics for PZT/Ferrite Ceramics (PZT/Ferrite 합성 세라믹의 특성에 관한 기초연구)

  • 김장용;이상현;이승봉;안형호;현충일;이명세;문병무
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.153-158
    • /
    • 2003
  • This thesis deal with ferroelectric and ferromagnetic materials. PZT/Ferrite ceramics were made by the making process using PZT powder and garnet ferrite powder. PZT and ferrite are mixed as much 90%-10%, 50%-50%, and so on. After making samples, we are polishing samples until thickness is 0.1~0.2mm. We measured all kinds of samples in room temperature and applied magnetic field from -4500 to 4500 Oersted and conducted test of magnetical and electrical measurement using VSM and lpC resolution electrometer calibrated with RT66A pulsed tester. From this measurement, we can calculate tunability of these samples using C value obtained from P-E loop. As a result, it was able to measure magnetic characteristic when two matter had each other component ratio, and it was compound. However, it confirmed the possibility that was able to have ferroelectric characteristic with you in PZT 90% and ferrite 10%. Therefore, If this thing comes for PZT 50% and ferrite 50% have ferroelectric characteristic as him in a compound sample ore, can use this in an oscillator, supersonic waves detector in addition to a piezoelectric element. It may contribute to multipurpose of an element and demands such as a miniaturization of equipment, efficiency, reduce of a price which can use a characteristic of two components.

A Study on the Effects of Ignition Systems on the Heat Release Rate and Mass Fraction Burnt at a Constant Volume Combustion Chamber (정적연소기에서 점화장치가 열발생률과 잘량연소율에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1486-1496
    • /
    • 2000
  • The initial flame kernel development and flame propagation in a constant volume combustion chamber is analyzed by the heat release rate and the mass fraction burnt. The combustion pressure is measured with a piezoelectric type pressure sensor. In order to evaluate the effects of ignition system and ignition energy on the flame propagation, four different ignition systems are designed and tested, and the ignition energy is varied by the dwell time. Several different spark plugs are also tested and examined to analysis the effects of electrodes on flame kernel development. The results show that the when the dwell time is increased, and when the spark plug gap is extended, heat release rate and the mass burnt fraction are increased. The materials and shapes of electrodes affect the flame development, because they change the energy transfer efficiency from electrical energy to chemical energy. The diameter of electrodes influences not only the heat release rate but also the mass burnt fraction as well.

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF

Dielectric and electrostrictive properties of (Pb,Ba)(Zr,Ti))$O_3$ ceramics with $Y_2O_3$addition ((Pb,Ba)(Zr,Ti)$O_3$계 세라믹스의 )$Y_2O_3$첨가에 따른 유전 및 전왜 특성)

  • 김규수;윤광희;윤현상;홍재일;유주현;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.551-557
    • /
    • 1996
  • To decrease the hysteresis of electric field induced strain, $Y_{2}$ $O_{3}$ dopant of which amount is 0-0.8wt% was added to the (P $b_{0.73}$B $a_{0.27}$)(Z $r_{0}$ 75/ $Ti_{0.25}$) $O_{3}$ ceramics. Electromechanical coupling coefficients of the specimen with 0.1 Wt% $Y_{2}$ $O_{3}$ were $k_{p}$=26.9% and $k_{31}$ =20.4%, which exhibited the maximum value at the constant bias electric field of 10 kV/cm. At the same $Y_{2}$ $O_{3}$ addition amount, electric field piezoelectric constant ( $d_{3l}$) and strain(.DELTA.l/l) showed the maximum values of 139.6*10$^{-12}$ [C/N] and 126*10$^{-6}$ .DELTA. l/l respectively at 10 kV/cm electric field. And the hysteresis of strain showed the minimum value of 17.5%. So, we propose that it is possible to apply PBZT system with $Y_{2}$ $O_{3}$ dopant to the electrostrictive actuator.r.r.

  • PDF

Automated Surface Wave Measurements for Evaluating the Depth of Surface-Breaking Cracks in Concrete

  • Kee, Seong-Hoon;Nam, Boohyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.307-321
    • /
    • 2015
  • The primary objective of this study is to investigate the feasibility of an innovative surface-mount sensor, made of a piezoelectric disc (PZT sensor), as a consistent source for surface wave velocity and transmission measurements in concrete structures. To this end, one concrete slab with lateral dimensions of 1500 by 1500 mm and a thickness of 200 mm was prepared in the laboratory. The concrete slab had a notch-type, surface-breaking crack at its center, with depths increasing from 0 to 100 mm at stepwise intervals of 10 mm. A PZT sensor was attached to the concrete surface and used to generate incident surface waves for surface wave measurements. Two accelerometers were used to measure the surface waves. Signals generated by the PZT sensors show a broad bandwidth with a center frequency around 40 kHz, and very good signal consistency in the frequency range from 0 to 100 kHz. Furthermore, repeatability of the surface wave velocity and transmission measurements is significantly improved compared to that obtained using manual impact sources. In addition, the PZT sensors are demonstrated to be effective for monitoring an actual surface-breaking crack in a concrete beam specimen subjected to various external loadings (compressive and flexural loading with stepwise increases). The findings in this study demonstrate that the surface mount sensor has great potential as a consistent source for surface wave velocity and transmission measurements for automated health monitoring of concrete structures.

Estimation of Vibration Plate due to Moving Oscillator in Reinforcement Concrete (이동 가진원에 따른 철근 콘크리트 판에서의 진동평가)

  • Kim, Ie-Sung;Yoon, Seoung-Hyun;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.83-90
    • /
    • 2007
  • Today, many studies are progressed about source of vibration oscillator in reinforcement concrete structures. Source of vibration oscillator is load when it is happen from walking inhabitant. It is transmitted to another inhabitant through reinforcement concrete plate, and it is type of elastic wave. Those descriptions are ram wave and primary wave, secondary wave, and the are through the surface and inside plate. Analysis studies of those waves are used to piezoelectric materials. But, they are difficult to 3 axial type of transmitting elastic wave in concrete element. In this study, a fundamental study for source estimations of vibration oscillator using micro accelerometer are discussed.

  • PDF

Effect of Bias Magnetic Field on Magnetoelectric Characteristics in Magnetostrictive/Piezoelectric Laminate Composites

  • Chen, Lei;Luo, Yulin
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.347-352
    • /
    • 2015
  • The magnetoelectric (ME) characteristics for Terfenol-D/PZT laminate composite dependence on bias magnetic field is investigated. At low frequency, ME response is determined by the piezomagnetic coefficient $d_{33,m}$ and the elastic compliance $s_{33}^H$ of magnetostrictive material, $d_{33,m}$ and $s_{33}^H$ for Terfenol-D are inherently nonlinear and dependent on $H_{dc}$, leading to the influence of $H_{dc}$ on low-frequency ME voltage coefficient. At resonance, the mechanical quality factor $Q_m$ dependences on $H_{dc}$ results in the differences between the low-frequency and resonant ME voltage coefficient with $H_{dc}$. In terms of ${\Delta}E$ effect, the resonant frequency shift is derived with respect to the bias magnetic field. Considering the nonlinear effect of magnetostrictive material and $Q_m$ dependence on $H_{dc}$c, it predicts the low-frequency and resonant ME voltage coefficients as a function of the dc bias magnetic field. A good agreement between the theoretical results and experimental data is obtained and it is found that ME characteristics dependence on $H_{dc}$ are mainly influenced by the nonlinear effect of magnetostrictive material.

Effect of DyFeO3 Addition on Crystal Structure and Ferrcelectricity of the BiFeO3-PbTiO3 System

  • Kim, Seong-Seog;Kwon, Jong-Uk;Cheon, Chae Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.299-303
    • /
    • 2005
  • The crystal structure and ferroelectricity of the $(1-x)BiFeO_3\;(BF)-xPbTiO_3$ (PT) ceramic system with the addition of $DyFeO_3$ (DF) have been investigated for attaining a high temperature piezoelectric material. This study is focused on the relation between crystal structure and ferroelectric property with the addition of DF over the phase boundary in the (1-x)BF-xPT system. Hysteresis curves of polarization-electric field at room temperature have been measured. The X-ray and neutron diffraction data were analyzed by the rietveld refinement method. The addition of 0.1 mole DF into BF-PT system greatly increases the ferroelectric remanant polarization Pr values, e.g. 17 ${\mu}C/cm^2$ in 0.6BF-yDF-(0.4-y)PT and 31${\mu}C/cm^2$ in 0.5BF-yDF-(0.5.y)PT, respectively. The improved Pr value has been discussed in relation with crystal structure and electrical property.

Physical Properties of PNN-PMN-PZT Doped with Zinc Oxide and CLBO for Ultrasonic Transducer

  • Yoo, Juhyun;Kim, Tahee;Lee, Eunsup;Choi, Nak-Gu;Jeong, Hoy-Seung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.334-337
    • /
    • 2017
  • In this paper, to develop the ceramics with high $d_{33}$ and high $Q_m$ for ultrasonic transducer applications, $0.10Pb(Ni_{1/3}Nb_{2/3})O_3-0.07Pb(Mn_{1/3}Nb_{2/3})O_3-0.83Pb(Zr_{0.5}Ti_{0.5})_{0.83}O_3$ (PNN-PMN-PZT) ceramics were sintered at $940^{\circ}C$ using $CuO-Li_2CO_3-Bi_2O_3$ (CLBO) as a sintering aid by a traditional solid-state technique. The influence of zinc oxide additive on the physical properties of the prepared ceramics were systematically investigated. The R-T (rhombohedral-tetragonal) phase coexistence was found in the ceramics without zinc oxide additive and with increasing amounts of ZnO additive, the specimens showed a tetragonal phase. The formation of a liquid phase between ZnO and $Bi_2O_3$ contributed significantly to the grain growth of specimens. For the 0.1 wt% ZnO ceramics, the optimal physical properties of $d_{33}=370pC/N$, ${\varepsilon}_r=1,344$, $k_p=0.621$, and $Q_m=1,523$ were obtained.