• Title/Summary/Keyword: Piezoelectric Materials

Search Result 930, Processing Time 0.022 seconds

Frequency Agile Properties of Microstrip Antenna Using Quartz (Quartz를 이용한 마이크로스트립 안테나의 주파수 특성에 관한 연구)

  • 하용만;오승재;우형관;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.488-491
    • /
    • 2001
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. The resonant frequencies of the microstrip antenna using the piezoelectric substrate. The microstrip patch antenna made of Quartz substrate was designed and fabricated by Ensemble v 7.0 simulator. The experimental problem was compensated by Ensemble v 7.0

  • PDF

Effect of Excess CuO on the Sintering Behavior and Piezoelectric Properties of Bi0.5(Na0.82K0.18)0.5TiO3 Ceramics (Bi0.5(Na0.82K0.18)0.5TiO3 세라믹스의 소결거동 및 압전 특성에 대한 과잉의 CuO 첨가 효과)

  • Kang, Jin-Kyu;Jang, Hyun-Deok;Heo, Dae-Jun;Lee, Hyun-Young;Ahn, Kyoung-Kwan;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.372-376
    • /
    • 2014
  • We investigated the effect of excess CuO on the sintering behavior, ferroelectric, and piezoelectric properties of lead-free $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ (BNKT) ceramics. The addition of excess CuO was found to greatly contribute to the densification and grain growth, however, excess CuO over 3 mol% was precipitated at grain boundaries after sintering. BNKT with 1~2 mol% CuO in excess sintered at $975^{\circ}C$ showed piezoelectric properties comparable to those of unmodified BNKT sintered at $1,175^{\circ}C$. These results seem meaningful for its application to low cost multilayer actuators (MLAs) because low firing ceramics make it possible to apply less expensive base metals to the inner electrode of MLAs.

Development and Evaluation of Self-powered Energy Harvester in Wireless Sensor Node for Diagnosis of Electric Power System (전력계통 구조물의 상태진단용 자가발전 무선 센서 노드 개발 및 평가)

  • Kim, Chang Il;Jeong, Young-Hun;Yun, Ji Sun;Hong, Youn Woo;Jang, Yong-Ho;Choi, Beom-Jin;Park, Shin-Seo;Son, Chun Myung;Seo, Duck Ki;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.371-376
    • /
    • 2016
  • A self-powered piezoelectric energy harvester was developed for the application in wireless sensor node. The energy harvester was evaluated with power generation characteristics for the wireless sensor node for structural diagnosis of the electric power system. The self-powered wireless sensor node was set to measure temperature, vibration frequency of the electric power system. A piezoelectric harvester composed of 7 uni-morph cantilevers (functionalized as 6 generators and 1 vibration sensor) was connected to be an array and revealed to produce significantly high output power of approximately 10 mW at 120 Hz under 3.4 g((1 g = $9.8m/sec^2$). The wireless sensor node could work as the electric power generated by the developed piezoelectric harvester.

Electric-Field-Induced Strain Measurement of Ferroelectric Ceramics Using a Linear Variable Differential Transducer (선형 가변 차동 변압기를 이용한 강유전 세라믹의 전기장 인가에 따른 변형 측정)

  • Hyoung-Su Han;Chang Won Ahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • The measurement of strain under an electric field has been widely employed to comprehend the fundamental principles of electro-mechanical responses in ferroelectric, piezoelectric, and electrostrictive materials. In particular, understanding the strain properties of piezoelectric materials in response to electrical stimulation is crucial for researching and developing components such as piezoelectric actuators, acoustic devices, and ultrasonic generators. This tutorial paper introduces the components and operational principles of the linear variable differential transducer (LVDT), a widely used displacement measurement device in various industries. Additionally, we present the configuration of an experimental setup using LVDT to measure the strain characteristics of ferroelectric, piezoelectric, or electrostrictive materials under the application of an electric field. This paper includes simple measurement results and analyses obtained through the LVDT experimental setup, providing valuable information on research methods for the electro-mechanical interactions of various materials.

Output Power Properties of Step-up Piezoelectric Transformer by heat-cold cycling test

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Vo, Vietthang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.102-102
    • /
    • 2009
  • The piezoelectric transformer have attracted a lot of interest in recent years because of their potential applications in electronic devices. However, their reliability in practical applications has not been systematically studied. For many piezoelectric materials, the temperature reliability are among the biggest concerns. This paper presents an experimental study of the piezoelectric transformers with the focus on its reliability under varying temperature conditions.

  • PDF

Broadband Piezoelectric Vibration Energy Harvester Using Pole-Zero Cancellation Technique (극점-영점 상쇄 기법을 이용한 광대역 압전 진동 에너지 하베스터)

  • Kim, Gi-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.87-92
    • /
    • 2014
  • This paper presents a new design for a piezoelectric energy harvester with the potential to harvest vibration energy over a wide range of excitation frequencies, particularly beyond the resonance frequency. The piezoelectric vibration energy harvester employs the concept of pole-zero cancellation occurring in a lever type anti-resonant system. The experimental results show that the proposed energy harvester can provide the potential possibility of a broadband piezoelectric vibration energy harvester.

Calculation of Intensity Factors Using Weight Function Theory for a Transversely Isotropic Piezoelectric Material (횡등방성 압전재료에서의 가중함수이론을 이용한 확대계수 계산)

  • Son, In-Ho;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two-dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF

Development of Piezo-Eloectric Micro-Depth Control System (압전소자에 의한 미세이송시스템의 개발에 관한 연구)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.40-62
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool optical device measurement system. In order to keep a high precision displacement resolution it to useful to take a position sensor and feedback of the error. From the practical point of view high-resolution displacement sensor systems are very expensive and it is difficult to make such a sensitive sensor work properly in a poor operational environment of industry. In this study a piezo-electric micro-depth control system which does not require position sensor but piezoelectric voltage feedback has been developed. It is driven by hysteresis-considering reference input voltage calculated in advance and actuator/sensor characteristics of piezoelectric materials. From the result of experiments a fast and stable response of micro-depth control system has been achieved and an efficient technique to control the piezoelectric actuator suggested.

  • PDF

Study on the Bonding Process between Thin film and Piezoelectric Materials (박막과 압전 재료 결합에 관한 연구)

  • Chong, Woo-Suk;Kim, Gi-Beum;Hong, Chul-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1014-1018
    • /
    • 2005
  • The purpose of this study is to obtain strong bond strength at the interface between piezoelectric substrates and semiconductor thin films to be applied for the manufacture of high-performance acoustic wave semiconductor coupled device. For this purpose, we have compared and examined the effects of different surface treatment methods on hydrophile properties at the surface of the piezoelectric substrates. Moreover, we have observed the effect of microwave and laser on the elimination of water molecules at the interface. As for the piezoelectric substrates, dry method for surface treatment was found to be superior in the control of hydrophilicity of the surface compared to wet method. On the other hand, both microwave and laser were found to be effective in the elimination of water molecules in the interface.