Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.6.372

Effect of Excess CuO on the Sintering Behavior and Piezoelectric Properties of Bi0.5(Na0.82K0.18)0.5TiO3 Ceramics  

Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan)
Jang, Hyun-Deok (School of Materials Science and Engineering, University of Ulsan)
Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan)
Lee, Hyun-Young (School of Materials Science and Engineering, University of Ulsan)
Ahn, Kyoung-Kwan (School of Mechanical Engineering, University of Ulsan)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.6, 2014 , pp. 372-376 More about this Journal
Abstract
We investigated the effect of excess CuO on the sintering behavior, ferroelectric, and piezoelectric properties of lead-free $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ (BNKT) ceramics. The addition of excess CuO was found to greatly contribute to the densification and grain growth, however, excess CuO over 3 mol% was precipitated at grain boundaries after sintering. BNKT with 1~2 mol% CuO in excess sintered at $975^{\circ}C$ showed piezoelectric properties comparable to those of unmodified BNKT sintered at $1,175^{\circ}C$. These results seem meaningful for its application to low cost multilayer actuators (MLAs) because low firing ceramics make it possible to apply less expensive base metals to the inner electrode of MLAs.
Keywords
Piezoelectric; Lead-free ceramics; Bi-perovskite; Low temperature sintering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 111 (2007).
2 J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009).   DOI   ScienceOn
3 K. Uchino and Takahashi, Curr. Opinion Solid State Mater. Sci., 1, 698 (1996).   DOI
4 J. Pritchard, C. R. Bowen, and F. Lowrie, Brit. Ceram. Trans., 100, 1 (2001).   DOI
5 T. H. Dinh, H. Y. Lee, C. H. Yoon, R. A. Malik, Y. M. Kong, and J. S. Lee, J. Kor. Phys. Soc., 62, 1004 (2013).   DOI
6 A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999).   DOI
7 K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006).   DOI
8 N. V. Quyet, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn, and J. S. Lee, J. Alloys Compds., 511, 273 (2012).
9 X. Chao, D. Ma, R. Gu, and Z. Yang, J. Alloys Compds., 491, 698 (2010).   DOI   ScienceOn
10 C. F. Yang, L. Wu, and T. S. Wu, J. Mater. Sci., 27, 6573 (1992).   DOI
11 H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee, and H. W. Kang, J. Am. Ceram. Soc., 91, 2374 (2008).   DOI   ScienceOn
12 T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005).   DOI   ScienceOn
13 W. Jo, J. B. Ollagnier, J. L. Park, E. M. Anton, O. J. Kwon, C. Park, H. H. Seo, J. S. Lee, E. Erdem, R. A. Eichel, and J. Rödel, J. Eur. Ceram. Soc., 31, 2107 (2011).   DOI   ScienceOn
14 H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, J. Appl. Phys., 113, 154102 (2013).   DOI