• 제목/요약/키워드: Piezoelectric Materials

검색결과 930건 처리시간 0.028초

Cantilever형 바이몰프 압전소자의 출력특성에 관한 연구 (A Study on the Output Characteristics for the Cantilever Piezoelectric Bimorph)

  • 김용혁
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.581-587
    • /
    • 2010
  • Using piezoelectric elements to harvest energy from ambient vibrations has been of great interest over the past few years. Due to the relatively low power output of piezoelectric materials, there are many study to improve the energy harvesting efficiencies. This paper is study the efficiencies of the output energy considering the cantilever piezoelectric bimorph using aluminum vibration beam. when the length of vibration beam and the piezoelectric body becomes same and the maximum output power comes out. DC voltage was increased as the beam thickness and vibration frequency was increased. The vibration beam was able to achieve very large energy value.

압전응용을 위한 Langasite(La$_3$Ga$_5$SiO$_{14}$) 단결정의 성장 및 특성 (Growth and Characteristics of Langasite(La$_3$Ga$_5$SiO$_{14}$) Single Crystal for the Piezoelectric Applicatons)

  • 정일형;오근호
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.640-645
    • /
    • 1999
  • Recently rapid progress of electronic and telecommunication technology requires the development of new piezoelectric materials and cellular communication is more and more used in various fields. Langasite(La3Ga5SiO14) is suitable for new piezoelectric properties. Langastie can be applied as communication devices due to intermediate piezoelectric properties which are similar to those of quartz and LiTaO3 in its acoustic characteristics. So in this study Langastie(La3Ga5SiO14) single crystal with 47 mm in diameter and 25mm in length were sucessfully grown by using self-designed Czochralski system. In addition optimum growth conditions for the piezoelectric applications throughout estimation of crystal quality and frequency characteristics were investigated.

  • PDF

거리 측정용 1-3형 복합압전체 트랜스듀서의 펄스에코 응답 특성 (Pulse-echo response of 1-3 type piezoelectric composite transducers for distance measurement)

  • 최헌일;박정학;이수호;사공건
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권2호
    • /
    • pp.211-216
    • /
    • 1995
  • In this study, the piezoelectric ceramics/polymer composite transducers with 1-3 connectivity have been studied. A piezoelectric ceramics PZT prepared by Wet-Dry Combination method was used as a filler in polymer matrix Eccogel. We've got the pulse-echo response for 1-3 type piezc-electric composite transducers in water. It was shown that the transmitting and receiving sensitivity of 1-3 type piezoelectric composite transducers could be improved in comparison with that- of solid PZT transducers. The reason is for that 1-3 type Piezoelectric composites have low dielectric constant and density. There was in a good agreement between the resonant frequencies calculated from one period and observed results on the Ultrasonic Transducer Analyzer. According to these results we could be figured out the distance in water by virture of the pulse-echo response.

  • PDF

Switching Converter의 응용을 위한 압전 트랜스포머의 제작 및 특성 (The Properties and Manufacture of Piezoelectric Transformer for Application of Switching Converter)

  • 김성진;이수호;류주현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.630-633
    • /
    • 1999
  • This paper presents a new sort of multilayer piezoelectric ceramice transformer for switching regulatied power supplies. And this paper presents the study and development of a DC-DC converter with a transformer made from piezoelectric materials. This piezoelectric transformer operate, in the second thickness extensional vibration mode. Its resonant frequency is higher than 1MHz, This piezoelectric transformer was used the PbTiO$_3$ family ceramics because it was a material large anisotropy between electromechanical coupling factors k$_{t}$ and k$_{p}$. The input and output layer consists of two piezoelectric ceramic layer for eleivater of outpur power.wer.

  • PDF

Simulation and Design of a Multilayer Piezoelectric Actuator

  • Lee, Kabsoo;Yoo, Juhyun;Lee, Sangho;Hong, Jaeil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.144-147
    • /
    • 2017
  • In this study, two- and three-layer ceramic piezoelectric actuators were designed and simulated according to SUS316 thickness, actuator width, and mass using ATILA software in order to develop a piezoelectric actuator for haptic application. Numerical modelling based on the finite element method was performed to find the resonance frequencies and modal shapes of the actuator. The resonance frequency was affected by the thickness of the SUS316 plate and mass. On the other hand, the width of the actuator did not have a significant impact. Maximum displacements were generated at the center of a haptic three-layer ceramic piezoelectric actuator. The two-layer ceramic piezoelectric actuator with a mass of 2.6 g was suitable as $16.28{\mu}m$ at 265 Hz for haptic sensation application.

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Yang, Chan Ho;Song, Yewon;Jhun, Jeongpil;Hwang, Won Seop;Hong, Seong Do;Woo, Sang Bum;Sung, Tae Hyun;Jeong, Sin Woo;Yoo, Hong Hee
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1889-1894
    • /
    • 2018
  • An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A.;Mamis, K.I.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.53-83
    • /
    • 2013
  • Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

Structural and piezoelectric properties of lead-free (1-x)$(Na_{0.5}\;K_{0.5})NbO_3$-xBa($Ti_{0.9}$, $Sn_{0.1}$)$O_3$ ceramics

  • 차유정;남산;김창일;정영훈;이영진;백종후
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2009
  • Lead-free (1-x)$(Na_{0.5}K_{0.5})NbO_3$-xBa($Ti_{0.9}Sn_{0.1})O_3$ [NKN-BTS-100x] ceramics doped with 1 mol% $MnO_2$ have been prepared by the conventional solid state method and their structural and piezoelectric properties were investigated. The NKN-BTS-100x ceramics exhibited a dense and homogeneous microstructure when they were sintered at $1030-1150^{\circ}C$. Grain growth was observed for the specimen sintered at relatively low temperature of $1050^{\circ}C$. A tetragonal/orthorhombic morphotropic phase boundary (MPB) in the perovskite structure was also appeared for the NKN-BTS-100x ceramics (0.04$1050^{\circ}C$. The enhanced piezoelectric properties in the NKN-BTS ceramics with a MPB composition were obtained. Especially, for the NKN-BTS-6 ceramics, a high dielectric constant (${\varepsilon}^T_3/\varepsilon_0=1,400$), piezoelectric constant ($d_{33}=237$) and electromechanical coupling factor ($k_p=0.42$) were obtained.

  • PDF

태양 전지와 압전 재료를 이용한 하이브리드 발전시스템 개발 (Development of a Hybrid Power Generation System Using Photovoltaic Cells and Piezoelectric Materials)

  • 김영민;;;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.51-58
    • /
    • 2019
  • This paper deals with the operation of a hybrid power generation system made with photovoltaic cells and piezoelectric materials. The system can produce power from the wind as well as from the sun subject to their availability. Irrespective of the largeness of their power production, the power developed by both generators (i.e., phtovoltaic cells and piezoelectric cells) were combined and stored before it was applied to a load. Especially, the AC power (current) developed from each piezoelectric generator was converted by a full wave bridge rectifier and then combined prior to its storage in a capacitor. It was observed that the system can produce a maximum output power of 6.49 mW at loading resistance of $100{\Omega}$.

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.